[1] |
Prigogene I, Lefever R.Symmetry breaking instabilities in dissipative systems Ⅱ[J].J Chemical Physics, 1968, 48(4): 1665-1700. doi: 10.1063/1.1668893
|
[2] |
Brown K J, Davidson F A.Global bifurcation in the Brusselator system[J].Nonlinear Analysis, 1995, 24(12): 1713-1725. doi: 10.1016/0362-546X(94)00218-7
|
[3] |
You Y. Global dynamics of the Brusselator equations[J]. Dynamics of PDE, 2007, 4(2): 167-196.
|
[4] |
Peng R, Wang M X.Pattern formation in the Brusselator system[J].J Math Anal Appl, 2005, 309(1): 151-166. doi: 10.1016/j.jmaa.2004.12.026
|
[5] |
程铭, 史峻平, 王金凤, 王玉文.Brusselator型化学反应的定性分析[J]. 哈尔滨师范大学自然科学学报, 2010, (2): 7-9.(CHENG Ming, SHI Jun-ping, WANG Jin-feng, WANG Yu-wen.Qualitative analysis of chemical reaction system of Brusselator type[J].Natural Sciences Journal of Harbin Normal University, 2010, (2): 7-9.(in Chinese))
|
[6] |
李波, 王明新. Brusselator模型的扩散引起不稳定性和Hopf 分支[J]. 应用数学和力学, 2008, 29(6): 749-756.(LI Bo, WANG Ming-xin. Diffusion-driven instability and Hopf bifurcation in Brusselator system[J].Applied Mathematics and Mechanics(English Edition), 2008, 29(6): 825-832.)
|
[7] |
Ghergu M. Non-constant steady-state solutions for Brusselator type systems[J]. Nonlinearity, 2008, 21(10): 2331-2345. doi: 10.1088/0951-7715/21/10/007
|
[8] |
Peng R, Wang M X.On steady-state solutions of the Brusselator-type system[J]. Nonlinear Analysis: TMA, 2009, 71(3/4): 1389-1394. doi: 10.1016/j.na.2008.12.003
|
[9] |
Yi F Q, Wei J J, Shi J P.Diffusion-driven instability and bifurcation in the lengyel-epstein system[J].Nonlinear Analysis: RWA, 2008, 9(3): 1038-1051. doi: 10.1016/j.nonrwa.2007.02.005
|
[10] |
Yi F Q, Wei J J, Shi J P.Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system[J].J Differential Equations, 2009, 246(5): 1944-1977. doi: 10.1016/j.jde.2008.10.024
|
[11] |
Wang M X.Stability and Hopf bifurcation for a prey-predator model with prey-stage structure and diffusion[J].Math Biosci, 2008, 212(2): 149-160. doi: 10.1016/j.mbs.2007.08.008
|
[12] |
Du Y H, Pang P Y H, Wang M X.Qualitative analysis of a prey-predator model with stage structure for the predator[J].SIAM J Appl Math, 2008, 69(2): 596-620. doi: 10.1137/070684173
|
[13] |
陆启韶. 常微分方程的定性分析和分叉[M]. 北京: 北京航空航天大学出版社, 1989.(LU Qi-shao.Qualitative Method and Bifurcation of Ordinary Differential Equations[M].Beijing: Beijing Aviation and Spaceflight University Press, 1989.(in Chinese))
|
[14] |
Hassard B D, Kazarinoff N D, Wan Y H.Theory and Application of Hopf Bifurcation[M].Cambridge: Cambridge University Press, 1981.
|