留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多物理场中不同结构特征FCI的力学行为分析

李明健 陈龙 倪明玖 张年梅

李明健, 陈龙, 倪明玖, 张年梅. 多物理场中不同结构特征FCI的力学行为分析[J]. 应用数学和力学, 2015, 36(3): 252-261. doi: 10.3879/j.issn.1000-0887.2015.03.003
引用本文: 李明健, 陈龙, 倪明玖, 张年梅. 多物理场中不同结构特征FCI的力学行为分析[J]. 应用数学和力学, 2015, 36(3): 252-261. doi: 10.3879/j.issn.1000-0887.2015.03.003
LI Ming-jian, CHEN Long, NI Ming-jiu, ZHANG Nian-mei. Mechanical Behaviors of the FCI With Various Geometric Characteristics in Multi-Physics Fields[J]. Applied Mathematics and Mechanics, 2015, 36(3): 252-261. doi: 10.3879/j.issn.1000-0887.2015.03.003
Citation: LI Ming-jian, CHEN Long, NI Ming-jiu, ZHANG Nian-mei. Mechanical Behaviors of the FCI With Various Geometric Characteristics in Multi-Physics Fields[J]. Applied Mathematics and Mechanics, 2015, 36(3): 252-261. doi: 10.3879/j.issn.1000-0887.2015.03.003

多物理场中不同结构特征FCI的力学行为分析

doi: 10.3879/j.issn.1000-0887.2015.03.003
基金项目: 国家自然科学基金(51376175);科技部ITER专项资助(2013GB114001)
详细信息
    作者简介:

    李明健(1989—),男,吉林人,博士生(E-mail: mingjian-li@163.com);张年梅(1965—),女,江西人,教授,博士(通讯作者. E-mail: nmzhang@ucas.ac.cn).

  • 中图分类号: O343.6

Mechanical Behaviors of the FCI With Various Geometric Characteristics in Multi-Physics Fields

Funds: The National Natural Science Foundation of China(51376175)
  • 摘要: 流道插件(FCI)是ITER中包层模块的重要部件,起到电绝缘和热绝缘的作用,FCI的力学行为是对复杂的磁-热-流-固多物理场共同作用的响应.将有限体积法和有限元方法相结合,对包层流道中的流场、温度场以及FCI的应力应变场进行求解,分析了磁场效应对结构的影响,以及不同FCI壁厚和间隙流宽度等结构特征对包层的影响.计算结果表明,强磁场虽然会产生较强的MHD效应,但可以降低第一壁温度和FCI结构热应力;较厚的FCI可以降低第一壁上的最高温度,但也会增加FCI上的温度梯度和热应力;而较宽的间隙有利于降低第一壁上的最高温度,但会增加FCI的最大Mises应力.
  • [1] Holtkamp N. An overview of the ITER project[J].Fusion Engineering and Design,2007,82(5/14): 427-434.
    [2] Wong C P C, Abdou M, Dagher M, Katoh Y, Kurtz R J, Malang S, Marriott E P, Merrill B J, Messadek K, Morley N B, Sawan M E, Sharafat S, Smolentsev S, Sze D K, Willms S, Ying A, Youssef M Z. An overview of the US DCLL ITER-TBM program[J].Fusion Engineering and Design,2010,85(7/9): 1129-1132.
    [3] Smolentsev V S, Moreau R, Bühler L, Mistrangelo C. MHD thermofluid issues of liquid-metal blankets: phenomena and advances[J].Fusion Engineering and Design,2010,85(7/9): 1196-1205.
    [4] Smolentsev S, Cuevas S, Beltrn A. Induced electric current-based formulation in computations of low magnetic Reynolds number magnetohydrodynamic flows[J].Journal of Computational Physics,2010,229(5): 1558-1572.
    [5] WANG Hong-yan, TANG Chan. Preliminary analysis of liquid LiPb MHD flow and pressure drop in DWT blanket of FDS-I[J].Fusion Engineering and Design,2012,87(7/8): 1501-1505.
    [6] NI Ming-jiu, Munipalli R, Morley N B, Huang P, Abdou M A. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number—part I: on a rectangular collocated grid system[J].Journal of Computational Physics,2007,227(1): 174-204.
    [7] NI Ming-jiu, Munipalli R, Huang P, Morley N B, Abdou M A. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number—part II: on an arbitrary collocated mesh[J].Journal of Computational Physics,2007,227(1): 205-228.
    [8] NI Ming-jiu, LI Jun-feng. A consistent and conservative scheme for incompressible MHD flows at a low magnetic Reynolds number—part III: on a staggered mesh[J].Journal of Computational Physics,2012,231(2): 281-298.
    [9] Smolentsev S, Morley N B, Wong C, Abdou M. MHD and heat transfer considerations for the US DCLL blanket for DEMO and ITER TBM[J].Fusion Engineering and Design,2008,83(10/12): 1788-1791.
    [10] Vitkovsky I V, Golovanov M M, Divavin V A, Kirillov I R, Lipko A V, Malkov A A, Kartashev I A, Komarov V M, Ogorodnikov A P, Schipakin O L. Neutronic, thermal-hydraulic and stress analysis of RF lithium cooled test blanket module for ITER[J].Fusion Engineering and Design,2000,49/50: 703-707.
    [11] Sharafat S, Aoyama A, Morley N, Smolentsev S, Katoh Y, Williams B, Ghoniem N. Development status of a SiC-foam based flow channel insert for a US-ITER DCLL TBM[J].Fusion Science and Technology,2009,56(2): 883-891.
    [12] Sharafat S, Aoyama A, Ghoniem N, Williams B, Katoh Y. Heat testing of a prototypical SiC-foam-based flow channel insert[J].Plasma Science, IEEE Transactions on,2010,38(10): 2993-2998.
    [13] Ying A, Abdou M, Zhang H, Munipalli R, Ulrickson M, Sawan M, Merrill B. Progress on an integrated multi-physics simulation predictive capability for plasma chamber nuclear components[J].Fusion Engineering and Design,2010,85(7/9): 1681-1688.
    [14] LIU Song-lin, JIN Qiang, WANG Wei-hua, LI Ming. Updated thermal-mechanical analysis of DFLL-TBM for ITER[J].Fusion Engineering and Design,2011,86(9/11): 2347-2351.
    [15] Smolentsev S, Morley N B, Abdou M. Magnetohydrodynamic and thermal issues of the SiCf/SiC flow channel insert[J].Fusion Science and Technology,2006,50(1): 107-119.
    [16] Hunt J C R. Magnetohydrodynamic flow in rectangular ducts[J].Journal of Fluid Mechanics,1965,21(4): 577-590.
    [17] Smolentsev S, Wong C, Malang S, Dagher M, Abdou M. MHD considerations for the DCLL inboard blanket and access ducts[J].Fusion Engineering and Design,2010,85(7): 1007-1011.
    [18] Aiello G, Giancarli L, Golfier H, Maire J F. Modeling of mechanical behavior and design criteria for SiCf/SiC composite structures in fusion reactors[J].Fusion Engineering and Design,2003,65(1): 77-88.
    [19] Riccardi B, Fenici P, Frias Rebelo A, Giancarli L, Le Marois G, Philippe E. Status of the European R&D activities on SiCf/SiC composites for fusion reactors[J].Fusion Engineering and Design,2000,51/52: 11-22.
  • 加载中
计量
  • 文章访问数:  1222
  • HTML全文浏览量:  161
  • PDF下载量:  796
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-10-30
  • 刊出日期:  2015-03-15

目录

    /

    返回文章
    返回