留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

奇异边界法分析含水下障碍物水域中的水波传播问题

李珺璞 傅卓佳 陈文

李珺璞, 傅卓佳, 陈文. 奇异边界法分析含水下障碍物水域中的水波传播问题[J]. 应用数学和力学, 2015, 36(10): 1035-1044. doi: 10.3879/j.issn.1000-0887.2015.10.003
引用本文: 李珺璞, 傅卓佳, 陈文. 奇异边界法分析含水下障碍物水域中的水波传播问题[J]. 应用数学和力学, 2015, 36(10): 1035-1044. doi: 10.3879/j.issn.1000-0887.2015.10.003
LI Jun-pu, FU Zhuo-jia, CHEN Wen. The Singular Boundary Method for Obliquely Incident Water Wave Passing a Submerged Breakwater[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1035-1044. doi: 10.3879/j.issn.1000-0887.2015.10.003
Citation: LI Jun-pu, FU Zhuo-jia, CHEN Wen. The Singular Boundary Method for Obliquely Incident Water Wave Passing a Submerged Breakwater[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1035-1044. doi: 10.3879/j.issn.1000-0887.2015.10.003

奇异边界法分析含水下障碍物水域中的水波传播问题

doi: 10.3879/j.issn.1000-0887.2015.10.003
基金项目: 国家自然科学基金(11372097;11302069);111引智计划(B12032);国家杰出青年科学基金(11125208);中国博士后科学基金(2014M561565)
详细信息
    作者简介:

    李珺璞(1991—),男,河南开封人,硕士生(E-mail: lijunpu@hhu.edu.cn);傅卓佳(1985—),男,浙江绍兴人,讲师(E-mail: paul212063@hhu.edu.cn);陈文(1967—),男,江苏镇江人,教授,博士生导师(通讯作者. E-mail: chenwen@hhu.edu.cn).

  • 中图分类号: O353.2

The Singular Boundary Method for Obliquely Incident Water Wave Passing a Submerged Breakwater

Funds: The National Natural Science Foundation of China(11372097;11302069); The National Science Fund for Distinguished Young Scholars of China(11125208); China Postdoctoral Science Foundation(2014M561565)
  • 摘要: 研究奇异边界法模拟水波在含水下障碍物水域的传播过程.奇异边界法是一种最近提出的新型边界配点方法,具有无网格和无数值积分、数学简单、编程容易等优点.首先研究了奇异边界法分析典型水波算例的精度及效率,并与边界元法的计算结果进行比较,然后通过数值模拟讨论分析了水下障碍物位置、尺寸及形状等因素对水波传播的影响.发现奇异边界法的计算精度较高,且与边界元法的计算结果吻合较好;数值结果显示水下障碍物的不同高宽比对水波的传播影响明显:障碍物无量纲高度越大对水波的屏障作用越明显;障碍物无量纲宽度增加对水波的屏障作用先增强后变弱.在高宽比一定时,斜率变化对水波的屏障作用不明显;含吸收边界水下障碍物可以得到较低的传递系数和较高的反射系数, 对水波的屏障作用更为明显.
  • [1] Chen K H, Chen J T, Lin S Y, Lee Y T. Dual boundary element analysis of normal incident wave passing a thin submerged breakwater with rigid, absorbing and permeable boundaries[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering(ASCE),2004,130(4): 179-190.
    [2] Fairweather G, Karageorghis A. The method of fundamental solutions for elliptic boundary value problems[J]. Advances in Computational Mathematics,1998,9(1/2): 69-95.
    [3] Golberg M A, Chen C S, Ganesh M. Particular solutions of 3D Helmholtz-type equations using compactly supported radial basis functions[J]. Engineering Analysis With Boundary Elements,2000,24(7/8): 539-547.
    [4] 程玉民, 陈美娟. 弹性力学的一种边界无单元法[J]. 力学学报, 2003,35(2):181-186.(CHENG Yu-min, CHEN Mei-juan. A boundary element-free method for linear elasticity[J]. Acta Mechanica Sinica,2003,35(2): 181-186.(in Chinese))
    [5] Young D L, Chen K H, Lee C W. Novel meshless method for solving the potential problems with arbitrary domain[J]. Journal of Computational Physics,2005,209(1): 290-321.
    [6] 刘从建, 陈文, 王海涛, 谷岩. 自适应快速多极正则化无网格法求解大规模三维位势问题[J]. 应用数学和力学, 2013,34(3): 259-271.(LIU Cong-jian, CHEN Wen, WANG Hai-tao, GU Yan. Adaptive fast multipole regularized meshless method for large-scale three dimensional potential problems[J]. Applied Mathematics and Mechanics,2013,34(3) : 259-271.(in Chinese))
    [7] Sarler B. Solution of potential flow problems by the modified method of fundamental solutions:formulations with the single layer and the double layer fundamental solutions[J]. Engineering Analysis With Boundary Elements,2009,33(12): 1374-1382.
    [8] Zhang J M, Yao Z H, Li H. A hybrid boundary node method[J]. International Journal for Numerical Methods in Engineering,2002,53(4): 751-763.
    [9] Liu Y J. A new boundary meshfree method with distributed sources[J]. Engineering Analysis With Boundary Elements,2010,34(11): 914-919.
    [10] Chen W, Tanaka M. A meshless, integration-free, and boundary-only RBF technique[J]. Computers and Mathematics With Applications,2002,43(3/5): 379-391.
    [11] 师晋红, 傅卓佳, 陈文. 边界节点法计算二维瞬态热传导问题[J]. 应用数学和力学, 2014,35(2): 111-120.(SHI Jin-hong, FU Zhuo-jia, CHEN Wen. Boundary knot method for 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics,2014,35(2): 111-120.(in Chinese))
    [12] 高效伟, 张传增. 非均质问题中的无网格边界单元法[J]. 固体力学学报, 2006,27(S1): 62-69.(GAO Xiao-wei, ZHANG Chuan-zeng. Meshless BEM in nonhomogeneous problems[J]. Chinese Journal of Solid Mechanics,2006,27(S1): 62-69.(in Chinese))
    [13] Chen J T, Wu A C. Null-field approach for piezoelectricity problems with arbitrary circular inclusions[J]. Engineering Analysis With Boundary Elements,2006,30(11): 971-993.
    [14] 傅卓佳. 波传播问题的半解析无网格边界配点法[D]. 博士学位论文. 南京: 河海大学, 2013.(FU Zhuo-jia. Semi-analytical meshless boundary collocation methods for wave propagation problems[D]. PhD Thesis. Nanjing: Hohai University, 2013.(in Chinese))
    [15] 陈文. 奇异边界法:一个新的、简单、无网格、边界配点数值方法[J]. 固体力学学报, 2009,30(6): 592-599.(CHEN Wen. Singular boundary method: a novel, simple, meshfree, boundary collocation numerical method[J]. Chinese Journal of Solid Mechanics,2009,30(6): 592-599.(in Chinese))
    [16] Gu Y, Chen W, Zhang C Z. Singular boundary method for solving plane strain elastostatic problems[J]. International Journal of Solids and Structures,2011,48(18): 2549-2556.
    [17] 谷岩, 陈文. 改进的奇异边界法模拟三维位势问题[J]. 力学学报, 2012,40(2): 351-360.(GU Yan, CHEN Wen. Improved singular boundary method for three dimensional potential problems[J]. Acta Mechanica Sinica,2012,40(2): 351-360.(in Chinese))
    [18] CHEN Wen, FU Zhuo-jia, Chen C S. Recent Advances in Radial Basis Function Collocation Methods [M]. Berlin: Springer-Verlag, 2013.
    [19] FU Zhuo-jia, CHEN Wen, GU Yan. Burton-Miller type singular boundary method for acoustic radiation and scattering[J]. Journal of Sound and Vibration,2014,333(16): 3776-3793.
    [20] CHEN Kue-hong, LU Mi-cheng, HSU Hui-mi. Regularized meshless method analysis of the problem of obliquely incident water wave[J]. Engineering Analysis With Boundary Elements,2011,35(3): 355-362.
    [21] Abul-Azm A G. Diffraction through wide submerged breakwaters under oblique waves[J].Ocean Engineering,1994,21(7): 683-706.
    [22] CHEN Wen, ZHANG Jin-yang, FU Zhuo-jia. Singular boundary method for modified Helmholtz equations[J]. Engineering Analysis With Boundary Elements,2014,44: 112-119.
  • 加载中
计量
  • 文章访问数:  2143
  • HTML全文浏览量:  160
  • PDF下载量:  2379
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-30
  • 修回日期:  2015-03-03
  • 刊出日期:  2015-10-15

目录

    /

    返回文章
    返回