Abstract: Based on the concept of variational integrator and the Lagrange-d’Alembert principle with dual variables, a high-order structure-preserving algorithm for Hamiltonian systems with nonholonomic constraints was proposed. Based on the variational integrator, a discretization form of the Lagrange-d’Alemb...
Abstract: The heat conduction is a common problem in engineering practice. Compared with those of isotropic materials, the heat conduction problem of anisotropic materials is more complicated, so it is of great significance to accurately predict the internal temperature distribution. The numerical manifold me...
Abstract: The smooth continuous wing leading edge with variable cambers has the advantages of reduced noise and improved aerodynamic efficiency. Based on the 2D airfoil flexible skin design method, a design method for flexible skin on the variable-curvature leading edge of a swept-back airfoil was proposed. T...
Abstract: The AUSM-type schemes based on the advection upstream splitting method have the advantages of simpleness, high efficiency and high resolution, and are widely applied in computational fluid dynamics. The traditional AUSM-type schemes only consider the normal waves to the cell interface while ignoring...
Abstract: The phase synchronization of coupled neurons under different complex network environments (including classical small-world, scale-free and random networks) was studied. Differing from the clustering phase synchronization in coupled phase oscillators generally found and reported in previous literatur...
Abstract: Chaos and its coexistence involve very important problems in dynamical analysis. A delayed inertial 2-neuron system with non-monotonic activation function was studied with the Poincaré section method. With system parameters fixed and time delay τ chosen as the parametric variable, 1D bifurcation dia...
Abstract: The asymptotic stability of fractional-order neural networks with discrete delays and distributed delays in the sense of Caputo derivatives was studied. Through construction of the Lyapunov function and with the fractional Razumikhin theorem, sufficient conditions for asymptotic stability of fractio...
Abstract: A time-periodic reaction-diffusion Lotka-Volterra competition model with delay was considered. Under certain conditions, with the method of super- and sub-solutions and monotone iterations, the existence of time-periodic traveling waves connecting 2 semi-trivial periodic solutions of the correspondi...
Abstract: The event-triggered state estimator for nonlinear systems with time delay was studied. Firstly, the state estimator for nonlinear systems was established by the event-triggered mechanism, and the Lyapunov function was used to make the system mean square bounded in finite time. Secondly, based on the...
Abstract: A class of nonlinear fractional-order perturbed higher-order differential models was considered. Firstly, under suitable conditions, the outer solution to the original problem was obtained with the perturbation method. Then by means of the stretched variable, the composite expansion method and the t...
Abstract: The unified 1st-order sufficient condition was proposed for existence of the local extremums of n-variable functions, in a case more general than classical unconstrained optimization ones. The difficulty of no such 1st-order sufficient condition in optimization theories was solved. Moreover, the 1st...