[1] |
马文涛, 许艳, 马海龙. 修正的内部基扩充无网格法求解多裂纹应力强度因子[J]. 工程力学, 2015,32(10): 18-24.(MA Wen-tao, XU Yan, MA Hai-long. Solving stress intensity factors of multiple cracks by using a modified intrinsic basis enriched meshless method[J]. Engineering Mechanics,2015,32(10): 18-24.(in Chinese))
|
[2] |
Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Holland: Noordhoff Press, 1953: 1-768.
|
[3] |
Wang Y H, Tham L G, Lee P K K, Tsui Y. A boundary collocation method for cracked plates[J]. Computers & Structures,2003,81(28): 2621-2630.
|
[4] |
李爱民, 崔海涛, 温卫东. I-II复合型多裂纹板的应力强度因子分析[J]. 机械科学与技术, 2015,34(5): 803-807.(LI Ai-min, CUI Hai-tao, WEN Wei-dong. Analyzing stress intensity factors of a plate with multiple mixed-mode cracks[J]. Mechanical Science and Technology for Aerospace Engineering,2015,34(5): 803-807.(in Chinese))
|
[5] |
Chen W H, Chang C S. Analysis of two dimensional fracture problems with multiple cracks under mixed boundary conditions[J]. Engineering Fracture Mechanics,1989,34(4): 921-934.
|
[6] |
刘钧玉, 林皋, 胡志强. 裂纹面荷载作用下多裂纹应力强度因子计算[J]. 工程力学, 2011,28(4): 7-12.(LIU Jun-yu, LIN Gao, HU Zhi-qiang. The calculation of stress intensity factors of multiple cracks under surface tractions[J]. Engineering Mechanics,2011,28(4): 7-12.(in Chinese))
|
[7] |
Cartwright D J, Rooke D P. Approximate stress intensity factors compounded from known solutions[J]. Engineering Fracture Mechanics,1974,6(3): 563-571.
|
[8] |
陈莉, 王志智, 聂学州. 一种多裂纹应力强度因子计算的新方法[J]. 结构强度, 2004,26(S): 210-212.(CHEN Li, WANG Zhi-zhi, NIE Xue-zhou. New approach for stress intensity factor calculation of multiple site cracks[J]. Journal of Mechanical Strength,2004,26(S): 210-212.(in Chinese))
|
[9] |
Guo Z, Liu Y J, Ma H, Huang S. A fast multipole boundary element method for modeling 2-D multiple crack problems with constant elements[J]. Engineering Analysis With Boundary Elements,2014,47: 1-9.
|
[10] |
Singh I V, Mishra B K, Pant M. A modified intrinsic enriched element free Galerkin method for multiple cracks simulation[J]. Materials and Design,2010,31(1): 628-632.
|
[11] |
陈军斌, 魏波, 谢青, 王汉青, 李涛涛, 王浩. 基于扩展有限元的页岩水平井多裂缝模拟研究[J]. 应用数学和力学, 2016,37(1): 73-83.(CHEN Jun-bin, WEI Bo, XIE Qing, WANG Han-Qing, LI Tao-tao, WANG Hao. Simulation of multi-hydrofracture horizontal wells in shale based on the extended finite element method[J]. Applied Mathematics and Mechanics, 2016,37(1): 73-83.(in Chinese))
|
[12] |
杨绿峰, 徐华, 彭俚, 李冉. 断裂问题分析的Williams广义参数单元[J]. 计算力学学报, 2009,26(1): 33-39.(YANG Lü-feng, XU Hua, PENG Li, LI Ran. Analysis of crack problems by Williams generalized parametric element[J]. Chinese Journal of Computational Mechanics,2009,26(1): 33-39.(in Chinese))
|
[13] |
杨绿峰, 徐华, 李冉, 彭俚. 广义参数有限元法计算应力强度因子[J]. 工程力学, 2009,26(3): 48-54.(YANG Lü-feng, XU Hua, LI Ran, PENG Li. The finite element with generalized coefficients for stress intensity factor[J]. Engineering Mechanics,2009,26(3): 48-54.(in Chinese))
|
[14] |
徐华, 杨绿峰, 佘振平. Ⅲ型应力强度因子分析的Williams单元[J]. 中南大学学报(自然科学版), 2012,43(8): 3237-3243.(XU Hua, YANG Lü-feng, SHE Zhen-pin. Williams element for mode-Ⅲ stress intensity factor[J]. Journal of Central South University(Science and Technology), 2012,43(8): 3237-3243.(in Chinese))
|
[15] |
中国航空研究院. 应力强度因子手册(增订版)[M]. 北京: 科学出版社, 1993: 75-76, 110-113.(China Aviation Institute. The Stress Intensity Factor Handbook(Updated Version) [M]. Beijing: Science Press, 1993: 75-76, 110-113.(in Chinese))
|