留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相场方法模拟液滴的动态润湿行为

李家宇 曾忠 乔龙

李家宇, 曾忠, 乔龙. 相场方法模拟液滴的动态润湿行为[J]. 应用数学和力学, 2019, 40(9): 957-967. doi: 10.21656/1000-0887.400129
引用本文: 李家宇, 曾忠, 乔龙. 相场方法模拟液滴的动态润湿行为[J]. 应用数学和力学, 2019, 40(9): 957-967. doi: 10.21656/1000-0887.400129
LI Jiayu, ZENG Zhong, QIAO Long. Numerical Simulation of Droplets’Dynamic Wetting Process With the Phase Field Method[J]. Applied Mathematics and Mechanics, 2019, 40(9): 957-967. doi: 10.21656/1000-0887.400129
Citation: LI Jiayu, ZENG Zhong, QIAO Long. Numerical Simulation of Droplets’Dynamic Wetting Process With the Phase Field Method[J]. Applied Mathematics and Mechanics, 2019, 40(9): 957-967. doi: 10.21656/1000-0887.400129

相场方法模拟液滴的动态润湿行为

doi: 10.21656/1000-0887.400129
基金项目: 国家自然科学基金(11572062)
详细信息
    作者简介:

    李家宇(1994—),硕士生(E-mail: jiayu2012@cqu.edu.cn);曾忠(1968—),教授,博士,博士生导师(通讯作者. E-mail: zzeng@cqu.edu.cn).

  • 中图分类号: O359

Numerical Simulation of Droplets’Dynamic Wetting Process With the Phase Field Method

Funds: The National Natural Science Foundation of China(11572062)
  • 摘要: 液滴的动态湿润现象广泛存在于自然界和工业生产中,该现象数值研究的建模需要解决接触线附近的奇异性并引入合理的接触角描述.基于相场方法,结合Yokoi动态接触角模型,建立了考虑动态润湿效应的两相流数值模型,并在OpenFOAM开源平台上实现相应程序.针对液滴撞击壁面的动态湿润过程,数值模拟和对比研究了不同的接触角模型.结果表明:接触角模型的选择对液滴动态润湿过程的模拟结果具有较大的影响,其中基于改进动态接触角模型的结果与文献中的实验结果具有很好的吻合度,反映了提出的数值模型在液滴的动态润湿行为模拟的有效性.
  • [1] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Advanced Materials,2002,14(24): 1857-1860.
    [2] YARIN A L. Drop impact dynamics: splashing, spreading, receding, bouncing...[J]. Annual Review of Fluid Mechanics,2006,38(1): 159-192.
    [3] HUE P L. Progress and trends in ink-jet printing technology[J]. Journal of Imaging Science and Technology,1998,42: 49-62.
    [4] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London,1805,95: 65-87.
    [5] HUH C, SCRIVEN L E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line[J]. Journal of Colloid and Interface Science,1971,35(1): 85-101.
    [6] DUSSAN E B. On the spreading of liquids on solid surfaces: static and dynamic contact lines[J]. Annual Review of Fluid Mechanics,1979,11(1): 371-400.
    [7] DE GENNES P G. Wetting: statics and dynamics[J]. Reviews of Modern Physics,1985,57(3): 827-863.
    [8] JACQMIN D. Contact-line dynamics of a diffuse fluid interface[J]. Journal of Fluid Mechanics,2000,402: 57-88.
    [9] [9]COX R G. The dynamics of the spreading of liquids on a solid surface, part 1: viscous flow[J]. Journal of Fluid Mechanics,1986,168(1): 169-194.
    [10] VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics,1977,11(5): 714-721.
    [11] HOCKING L M. The spreading of a thin drop by gravity and capillarity[J]. The Quarterly Journal of Mechanics and Applied Mathematics,1983,36(1): 55-69.
    [12] TANNER L H. The spreading of silicone oil drops on horizontal surfaces[J]. Journal of Physics D: Applied Physics,1979,12(9): 1473-1484.
    [13] UNVERDI S O, TRYGGVASON G. A front-tracking method for viscous, incompressible, multi-fluid flows[J]. Journal of Computational Physics,1992,100(1): 25-37.
    [14] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics,1981,39(1): 201-225.
    [15] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of Computational Physics,1988,79(1): 12-49.
    [16] JACQMIN D. Calculation of two-phase Navier-Stokes flows using phase-field modeling[J]. Journal of Computational Physics,1999,155(1): 96-127.
    [17] DING H, SPELT P D M. Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations[J]. Journal of Fluid Mechanics,2007,〖STHZ〗 576: 287. DOI: 10.1017/S0022112007004910.
    [18] QIAO L, ZENG Z, XIE H, et al. Modeling thermocapillary migration of interfacial droplets by a hybrid lattice Boltzmann finite difference scheme[J]. Applied Thermal Engineering,2018,131: 910-919.
    [19] 周平, 曾忠, 乔龙. 假塑性流体液滴撞击壁面上的铺展的格子Boltzmann模拟[J]. 重庆大学学报, 2018,41(12): 1-9.(ZHOU Ping, ZENG Zhong, QIAO Long. 〖JP2〗Simulation of shear-thinning droplets impact on solid surfaces by using lattice Boltzmann method[J]. Journal of Chongqing University,2018,41(12): 1-9.(in Chinese))〖JP〗
    [20] YOKOI K, VADILLO D, HINCH J, et al. Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface[J]. Physics of Fluids,2009,21(7): 072102. DOI: 10.1063/1.3158468.
    [21] CAHN J W, HILLIARD J E. Free energy of a nonuniform system Ⅲ: nucleation in a two-component incompressible fluid[J]. The Journal of Chemical Physics,1959,31(3): 688-699.
    [22] CHELLA R, VIALS J. Mixing of a two-phase fluid by cavity flow[J]. Physical Review E,1996,53(4): 3832-3840.
    [23] DING H, SPELT P D. Wetting condition in diffuse interface simulations of contact line motion[J]. Physical Review E,2007,75(4): 046708. DOI: 10.1103/PhysRevE.75.046708.
    [24] PASANDIDEH-FARD M, AZIZ S D, CHANDRA S, et al. Cooling effectiveness of a water drop impinging on a hot surface[J]. International Journal of Heat and Fluid Flow,2001,22(2): 201-210.
    [25] OLSSON E, KREISS G, ZAHEDI S. A conservative level set method for two phase flow[J]. Journal of Computational Physics,2007,225: 785-807.
    [26] JASAK H. Error analysis and estimation for finite volume method with applications to fluid flow[D]. PhD Thesis. London: Imperial College London, 1996.
    [27] DUPONT J B, LEGENDRE D. Numerical simulation of static and sliding drop with contact angle hysteresis[J]. Journal of Computational Physics,2010,229(7): 2453-2478.
  • 加载中
计量
  • 文章访问数:  1572
  • HTML全文浏览量:  266
  • PDF下载量:  945
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-01
  • 修回日期:  2019-04-09
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回