轴对称变厚度扁球壳的非线性弯曲问题*
Nonlinear Bending of the Shallow Spherical Shells with Variable Thickness under Axisymmetricai Leads
-
摘要: 基于导出的变厚度扁球壳轴对称非线性弯曲的控制方程,引用插值矩阵法数值求解.通过算例分析表明,本法易于实施,精度高,且内力与位移具有同阶的精度.Abstract: Based on the differential equation of the nonlinear bending of shallow spherical shells with variable thickness under axisymmetrical loads, this paper studies the numerical solution of the nonlinear differential equation by means of interpolating matrix method. The analysis of the results indicates that the suggested method is easy to implement and obtains the same high accuracy for both the displacements and the internal forces.
-
[1] 牛忠荣,两点边值问题的一个新方法—插值矩阵法,合肥工业大学学报,9(9)(1987),92-102. [2] 叶开沅,刘人怀等,圆底扁薄球壳的非线性稳定问题(1,1),科学通报,2(1965),142-147. [3] 刘人怀,在内边缘均布力矩作用下中心开孔圆底扁球壳的非线性稳定问题,抖学通报,3(1965),253-255. [4] 斯米尔诺夫A·φ·,《结构的振动和稳定性》(楼志文译),科学出版社,北京,1963. [5] Cash J.R.,On the numerical integration of nonlinear two point boundary value problems using iserated deferred corrections,SAAM J.Numerical Analysis,25(4)(1988),862-882. [6] Daniel J.W.A road rnap of methods for approxim acing solutions of two paint boundary value problems,Lcctur Noies in Computer,Science,76( 1978),1-18. [7] 严圣平,扁球壳在均布压力作用下的非线性弯曲问题,应用力学学报,5(3)(1988),21-29. [8] 高建岭,结构分析的有限元线法,清华大学博士论文,(1990). [9] 肖凡,变厚度扁球壳的非线性分析,工程力学,7(1)(1990),8-17.
计量
- 文章访问数: 1956
- HTML全文浏览量: 81
- PDF下载量: 612
- 被引次数: 0