无限大板包含任意排列多个椭圆孔洞的应力集中和多裂纹的应力强度因子计算
Stress Concentration and Stress Intensity Factors for an Infinite Plane with Several Rows of Elliptic Holes and Cracks
-
摘要: 对于无限平面上任意排列的多个椭圆孔的应力集中,采用复变函数方法,直接构造能够反映各孔相互影响的应力函数,通过依次映射方法来满足各孔的边界条件,再利用围线积分方法化为线性代数方程求解.对于裂纹情况,将裂纹化为相应的椭圆,通过应力集中系数近似求得应力强度因子值.文中给出若干计算结果.Abstract: This paper deals with the stress concentration in plane with swveral arbitrarily distributed elliptic holes. By using the functions of complex variables, the stress functions in which the interactions of neighbouring holes are taken into consideration can be constructed. By applying the conformed mapping method to satisfy the boundary conditions of each hole, the governing equations can then be transformed into a set of simultaneous equations through boundary integrals. Moreover, the problems with crack can be derived by changing the elliptical rates of the ellipses, thereby an approximate solution of cracking problem may be obtained.Some computing examples are given in the paper.
-
[1] Ling, C B.,On the stress in a plate containing two holes, J App. Phy.19.Jan,(1948),77-81. [2] Schulz, K.J Proc, Nederl Akad.von urelerscheppen, 45 (1942), 233. 341. 457,524; 48 (1945),282-292. [3] мусхелишвилй,Н.И.,《数学弹性力学中的几个基本问题》,赵惠元译,科学出版社(1958) [4] Савин.Г.Н.,《孔附近的应力集中》,庐鼎霍译,科学出版社,(1958). [5] 唐立民,弹性平面上相邻几个圆孔的应力集中分析,科学记录,(1959, 10). [6] Chen Lin-si, On the problem of stress concentrations in the presence of many holes,Problems of Continuum Mechanics (1961) [7] 唐立民、周承调,靠近边缘的洞孔的应力集中问题。大连工学院学报,6 (1959). [8] 孙焕纯,无限长狭条被任意形状孔洞所削弱的应力集中问题,(1961),(未发表). [9] 孙焕纯等、半无限平面被不等直径的两圆孔所削弱的应力集中问题,大连工学院学报,1(1960). [10] 唐立民、周承调,非圆孔洞的应力集中问题.大连工学院学报,(1959). [11] 周承调、胡义祥.宏观与微观相结合的球墨铸铁的断裂力学分析,大连工学院工程力学研究所科研报告,79-3056, (1979). [12] Panasyuk, V V.,A general method of solution of two-dimensional problems in the theory of crack, J of Engineering Fracture Mechanics, 9. 2 (1977). [13] 北京钢铁研究院,《工程断裂力学》,国防工业出版社,(1977), 53. [14] Rooke, D.P and D. J Cartwright, Compendium of Stress Intcnsity Factors,(1976). 167 [15] 关长文,多孔介质的应力场分析与计算,大连工学院工程力学研究所研究生论文,(1980). [16] lsida, M.Mechanics of Fracture, 1, 1 (1973).
计量
- 文章访问数: 1871
- HTML全文浏览量: 77
- PDF下载量: 652
- 被引次数: 0