留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

理想M-C材料强度评估判据与等效塑性应变

席丰 李芳 胡亚超 谭英华 温新月

席丰, 李芳, 胡亚超, 谭英华, 温新月. 理想M-C材料强度评估判据与等效塑性应变[J]. 应用数学和力学, 2024, 45(12): 1567-1576. doi: 10.21656/1000-0887.440345
引用本文: 席丰, 李芳, 胡亚超, 谭英华, 温新月. 理想M-C材料强度评估判据与等效塑性应变[J]. 应用数学和力学, 2024, 45(12): 1567-1576. doi: 10.21656/1000-0887.440345
XI Feng, LI Fang, HU Yachao, TAN Yinghua, WEN Xinyue. Strength Evaluation Criteria and Equivalent Plastic Strain for Ideal M-C Materials[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1567-1576. doi: 10.21656/1000-0887.440345
Citation: XI Feng, LI Fang, HU Yachao, TAN Yinghua, WEN Xinyue. Strength Evaluation Criteria and Equivalent Plastic Strain for Ideal M-C Materials[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1567-1576. doi: 10.21656/1000-0887.440345

理想M-C材料强度评估判据与等效塑性应变

doi: 10.21656/1000-0887.440345
基金项目: 

山东省研究生教育优质课程建设项目 SDYKC20158

国家自然科学基金 12172198

详细信息
    作者简介:

    席丰(1962—),男,教授,博士,博士生导师(通讯作者. E-mail: xifeng@sdjzu.edu.cn)

  • 中图分类号: O344.2

Strength Evaluation Criteria and Equivalent Plastic Strain for Ideal M-C Materials

  • 摘要: 基于理想Mohr-Coulomb(M-C)屈服准则,该文提出了拉伸、压缩和剪切等效应力的概念及其公式,并给出了三个相应的强度评估条件.根据塑性功等效原则,分别导出了与上述等效应力共轭的拉伸、压缩等效塑性应变和等效塑性剪应变,探论了不同的摩擦因数下等效应变的变化特征.与Mises等效应变不同,所得到的M-C等效应变能够反映静水压力的影响,也可退化为简单应力状态.这些等效应力和等效应变概念都具有明确的物理意义,将能够应用于更准确、有效地评估拉、压性能不同材料的强度,对于用简单拉伸、压缩或剪切试验标定复杂应力状态下本构模型参数也具有直接应用价值.
  • 图  1  主应力空间的M-C屈服面及应力状态表示

    Figure  1.  The M-C yield surface and the representation of the stress state in the principal stress space

    图  2  σet/q-η-θ关系曲面

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Relationship surfaces of σet/q-η-θ

    图  3  σet/q-η-c1关系曲面

    Figure  3.  Relationship surfaces of σet/q-η-c1

    图  4  σet/σec-c1关系曲线

    Figure  4.  The relationship curve of σet/σec-c1

    图  5  M-C等效塑性应变系数随c1的变化曲线

    Figure  5.  Variations of the M-C equivalent plastic strain factor with c1

  • [1] 王仁, 熊祝华, 黄文彬. 塑性力学基础[M]. 北京: 科学出版社, 1982.

    WANG Ren, XIONG Zhuhua, HAUNG Wenbin. Fundamentals of Plastic Mechanics[M]. Beijing: Science Press, 1982. (in Chinese)
    [2] 周喆, 秦伶俐, 黄文彬, 等. 有限变形下的等效应力和等效应变问题[J]. 应用数学和力学, 2004, 25(5): 542-550. http://www.applmathmech.cn/article/id/75

    ZHOU Zhe, QIN Lingli, HUANG Wenbin, et al. Effective stress and strain in finite deformation[J]. Applied Mathematics and Mechanics, 2004, 25(5): 542-550. (in Chinese) http://www.applmathmech.cn/article/id/75
    [3] VERSHININ V V. A correct form of Bai-Wierzbicki plasticity model and its extension for strain rate and temperature dependence[J]. International Journal of Solids and Structures, 2017, 126: 150-162.
    [4] POURHOSSEINI O, SHABANIMASHCOOL M. Development of an elasto-plastic constitutive model for intact rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66: 1-12. doi: 10.1016/j.ijrmms.2013.11.010
    [5] 张学言. 岩土塑性力学[M]. 北京: 人民交通出版社, 1993.

    ZHANG Xueyan. Geotechnics Plastic Mechanics[M]. Beijing: China Communications Press, 1993. (in Chinese)
    [6] BRIDGMAN P W. Studies in Large Plastic Flow and Fracture: With Special Emphasis on the Effects of Hydrostatic Pressure[M]. Cambridge: Harvard University Press, 1964.
    [7] ALGARNI M, GHAZALI S, ZWAWI M. The emerging of stress triaxiality and Lode angle in both solid and damage mechanics: a review[J]. Mechanics of Solids, 2021, 56(5): 787-806. doi: 10.3103/S0025654421050058
    [8] STOUGHTON T B, YOON J W. A pressure-sensitive yield criterion under a non-associated flow rule for sheet metal forming[J]. International Journal of Plasticity, 2004, 20(4/5): 705-731.
    [9] ARETZ H. A consistent plasticity theory of incompressible and hydrostatic pressure sensitive metals[J]. Mechanics Research Communications, 2007, 34(4): 344-351. doi: 10.1016/j.mechrescom.2007.01.002
    [10] BAI Y, WIERZBICKI T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096. doi: 10.1016/j.ijplas.2007.09.004
    [11] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48. doi: 10.1016/0013-7944(85)90052-9
    [12] HAN Peihua, CHENG Peng, YUAN Shuai, et al. Characterization of ductile fracture criterion for API X80 pipeline steel based on a phenomenological approach[J]. Thin-Walled Structures, 2021, 164: 107254. doi: 10.1016/j.tws.2020.107254
    [13] VERSHININ V V. Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation[J]. International Journal of Solids and Structures, 2015, 67/68: 127-138. doi: 10.1016/j.ijsolstr.2015.04.007
    [14] PAREDES M, WIERZBICKI T. On mechanical response of zircaloy-4 under a wider range of stress states: from uniaxial tension to uniaxial compression[J]. International Journal of Solids and Structures, 2020, 206: 198-223. doi: 10.1016/j.ijsolstr.2020.09.007
    [15] BAI Yuanli, WIERZBICKI T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20. doi: 10.1007/s10704-009-9422-8
    [16] DA SILVA SANTOS I, SARZOSA D F B, PAREDES M. Ductile fracture modeling using the modified Mohr-Coulomb model coupled with a softening law for an ASTM A285 steel[J]. Thin-Walled Structures, 2022, 176: 109341. doi: 10.1016/j.tws.2022.109341
    [17] GRANUM H, MORIN D, BØRVIK T, et al. Calibration of the modified Mohr-Coulomb fracture model by use of localization analyses for three tempers of an AA6016 aluminium alloy[J]. International Journal of Mechanical Sciences, 2021, 192: 106122. doi: 10.1016/j.ijmecsci.2020.106122
    [18] ABAQUS Inc. ABAQUS Analysis User's Manual v[Z]. 2023.
    [19] LI X X. Parametric study on numerical simulation of missile punching test using concrete damaged plasticity (CDP) model[J]. International Journal of Impact Engineering, 2020, 144: 103652. doi: 10.1016/j.ijimpeng.2020.103652
    [20] CHEN W F. Constitutive Equations for Engineering Materials: Plasticity and Modeling[M]. New York: John Wiley & Sons Inc, 1994.
    [21] 赵亚溥. 近代连续介质力学[M]. 北京: 科学出版社, 2016.

    ZHAO Yapu. Modern Continuum Mechanics[M]. Beijing: Science Press, 2016. (in Chinese)
  • 加载中
图(5)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  44
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-04
  • 修回日期:  2024-03-16
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回