留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法

侯雅馨 刘洋 李宏

侯雅馨, 刘洋, 李宏. 非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法[J]. 应用数学和力学, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013
引用本文: 侯雅馨, 刘洋, 李宏. 非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法[J]. 应用数学和力学, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013
HOU Yaxin, LIU Yang, LI Hong. A Generalized BDF2-θ Finite Element Method for Nonlinear Distributed-Order Time-Fractional Hyperbolic Wave Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013
Citation: HOU Yaxin, LIU Yang, LI Hong. A Generalized BDF2-θ Finite Element Method for Nonlinear Distributed-Order Time-Fractional Hyperbolic Wave Equations[J]. Applied Mathematics and Mechanics, 2025, 46(1): 114-128. doi: 10.21656/1000-0887.450013

非线性时间分布阶双曲波动方程的广义BDF2-θ有限元方法

doi: 10.21656/1000-0887.450013
基金项目: 

国家自然科学基金 12161063

内蒙古自治区“创新团队发展计划” NMGIRT2413

内蒙古自治区“创新团队发展计划” NMGIRT2207

详细信息
    作者简介:

    侯雅馨(1991—),女,讲师,博士(E-mail: houyaxin@imut.edu.cn)

    李宏(1973—),女,教授,博士,博士生导师(E-mail: smslh@imu.edu.cn)

    通讯作者:

    刘洋(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: mathliuyang@imu.edu.cn)

  • 中图分类号: O357.41

A Generalized BDF2-θ Finite Element Method for Nonlinear Distributed-Order Time-Fractional Hyperbolic Wave Equations

  • 摘要: 构造了一种基于带有位移参数θ的广义向后差分公式(广义BDF2-θ)的有限元(FE)方法,用于求解非线性时间分布阶双曲波动方程. 时间方向由广义BDF2-θ近似进一步得到FE全离散格式. 将具有高阶时间导数的模型转化为包括两个低阶方程的耦合系统. 证明了格式的稳定性以及两个函数up的最优误差估计结果. 最后,通过数值算例验证了格式的可行性和有效性.
  • 图  1  θ=0.2, Δα=1/400, Δt=hx=hy=1/8时, 在t=0.5处的数值解uh

    Figure  1.  The numerical solution uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/8

    图  2  θ=0.2, Δα=1/400, Δt=hx=hy=1/16时, 在t=0.5处的数值解uh

    Figure  2.  The numerical solution uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/16

    图  3  θ=0.2, Δα=1/400, Δt=hx=hy=1/32时, 在t=0.5处的数值解uh

    Figure  3.  The numerical solution uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/32

    图  4  θ=0.2, Δα=1/400, Δt=hx=hy=1/64时, 在t=0.5处的数值解uh

    Figure  4.  The numerical solution uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/64

    图  5  θ=0.2, Δα=1/400, Δt=hx=hy=1/8时, 在t=0.5处的误差u-uh

    Figure  5.  The error u-uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/8

    图  6  θ=0.2, Δα=1/400, Δt=hx=hy=1/16时, 在t=0.5处的误差u-uh

    Figure  6.  The error u-uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/16

    图  7  θ=0.2, Δα=1/400, Δt=hx=hy=1/32时, 在t=0.5处的误差u-uh

    Figure  7.  The error u-uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/32

    图  8  θ=0.2, Δα=1/400, Δt=hx=hy=1/64时, 在t=0.5处的误差u-uh

    注1  在初始时刻,分数阶导数具有弱奇异性,当解具有较低的正则性时,通常会导致收敛阶掉阶. 为了处理这个问题,一些学者提出了分层网格方法[41-43]、校正方法[44-45]等技术. 在未来的研究中,我们可采用这些相关方法来处理当前研究的问题.

    Figure  8.  The error u-uh at t=0.5 with θ=0.2, Δα=1/400, Δt=hx=hy=1/64

    表  1  θ=0.2, Δα=1/400, Δt=hx=hy=1/8, 1/16, 1/32, 1/64时的误差和收敛阶

    Table  1.   The space-time errors and convergence orders with θ=0.2, Δα=1/400, Δt=hx=hy=1/8, 1/16, 1/32, 1/64

    Δt hx=hy u-uh rate T/s
    1/8 1/8 5.336 4×10-3 - 0.61
    1/16 1/16 1.477 5×10-3 1.852 7 2.54
    1/32 1/32 3.784 5×10-4 1.965 0 15.57
    1/64 1/64 9.518 8×10-5 1.991 3 134.66
    下载: 导出CSV

    表  2  θ=0.5, Δα=1/400, Δt=hx=hy=1/8, 1/16, 1/32, 1/64时的误差和收敛阶

    Table  2.   The space-time errors and convergence orders with θ=0.5, Δα=1/400, Δt=hx=hy=1/8, 1/16, 1/32, 1/64

    Δt hx=hy u-uh rate T/s
    1/8 1/8 1.294 6×10-3 - 1.92
    1/16 1/16 3.326 9×10-4 1.960 3 2.57
    1/32 1/32 8.461 5×10-5 1.975 2 16.45
    1/64 1/64 2.137 7×10-5 1.984 9 130.07
    下载: 导出CSV
  • [1] TAN Z J, ZENG Y H. Temporal second-order fully discrete two-grid methods for nonlinear time-fractional variable coefficient diffusion-wave equations[J]. Applied Mathematics and Computation, 2024, 466: 128457. doi: 10.1016/j.amc.2023.128457
    [2] CAO Y, YIN B L, LIU Y, et al. Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time-fractional wave problem[J]. Computational and Applied Mathematics, 2018, 37(4): 5126-5145. doi: 10.1007/s40314-018-0626-2
    [3] CHEN Y P, GU Q L, LI Q F, et al. A two-grid finite element approximation for nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations[J]. Journal of Computational Mathematics, 2022, 40(6): 936-954. doi: 10.4208/jcm.2104-m2021-0332
    [4] DING H F, LI C P. A high-order algorithm for time-caputo-tempered partial differential equation with riesz derivatives in two spatial dimensions[J]. Journal of Scientific Computing, 2019, 80(1): 81-109. doi: 10.1007/s10915-019-00930-5
    [5] LI L M, XU D, LUO M. Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation[J]. Journal of Computational Physics, 2013, 255: 471-485. doi: 10.1016/j.jcp.2013.08.031
    [6] REN J C, SUN Z Z. Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions[J]. Journal of Scientific Computing, 2013, 56(2): 381-408. doi: 10.1007/s10915-012-9681-9
    [7] CHEN M H, DENG W H. A second-order accurate numerical method for the space-time tempered fractional diffusion-wave equation[J]. Applied Mathematics Letters, 2017, 68: 87-93. doi: 10.1016/j.aml.2016.12.010
    [8] WANG Z B, VONG S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation[J]. Journal of Computational Physics, 2014, 277: 1-15. doi: 10.1016/j.jcp.2014.08.012
    [9] YU B, JIANG X Y, WANG C. Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium[J]. Applied Mathematics and Computation, 2016, 274: 106-118. doi: 10.1016/j.amc.2015.10.081
    [10] ZENG F H. Second-order stable finite difference schemes for the time-fractional diffusion-wave equation[J]. Journal of Scientific Computing, 2015, 65(1): 411-430. doi: 10.1007/s10915-014-9966-2
    [11] DU R L, SUN Z Z, WANG H. Temporal second-order finite difference schemes for variable-order time-fractional wave equations[J]. SIAM Journal on Numerical Analysis, 2022, 60(1): 104-132. doi: 10.1137/19M1301230
    [12] CAO F F, ZHAO Y M, WANG F L, et al. Nonconforming mixed FEM analysis for multi-term time-fractional mixed sub-diffusion and diffusion-wave equation with time-space coupled derivative[J]. Advances in Applied Mathematics and Mechanics, 2023, 15(2): 322-358. doi: 10.4208/aamm.OA-2021-0263
    [13] 吴迪, 李小林. 时间分数阶扩散波方程的无单元Galerkin法分析[J]. 应用数学和力学, 2022, 43(2): 215-223.

    WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 215-223. (in Chinese)
    [14] HEYDARI M H, HOOSHMANDASL M R, GHAINI F M M, et al. Wavelets method for the time fractional diffusion-wave equation[J]. Physics Letters A, 2015, 379(3): 71-76. doi: 10.1016/j.physleta.2014.11.012
    [15] 刘家惠, 邵林馨, 黄健飞. 带Caputo导数的变分数阶随机微分方程的Euler-Maruyama方法[J]. 应用数学和力学, 2023, 44(6): 731-743. doi: 10.21656/1000-0887.430250

    LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-Maruyama method for variable fractional stochastic differential equations with caputo derivatives[J]. Applied Mathematics and Mechanics, 2023, 44(6): 731-743. (in Chinese) doi: 10.21656/1000-0887.430250
    [16] 汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021, 42(8): 832-840. doi: 10.21656/1000-0887.420008

    WANG Jingying, ZHAI Shuying. An efficient numerical algorithm for fractional Cahn-Hilliard equations[J]. Applied Mathematics and Mechanics, 2021, 42(8): 832-840. (in Chinese) doi: 10.21656/1000-0887.420008
    [17] CHECHKIN A V, GORENFLO R, SOKOLOV I M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations[J]. Physical Review E, 2002, 66(4): 046129. doi: 10.1103/PhysRevE.66.046129
    [18] NIU Y X, LIU Y, LI H, et al. Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media[J]. Mathematics and Computers in Simulation, 2023, 203: 387-407. doi: 10.1016/j.matcom.2022.07.001
    [19] WEI L L, LIU L J, SUN H X. Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order[J]. Journal of Applied Mathematics and Computing, 2019, 59(1): 323-341. http://www.zhangqiaokeyan.com/journal-foreign-detail/0704025378140.html
    [20] DIETHELM K, FORD N J. Numerical analysis for distributed-order differential equations[J]. Journal of Computational and Applied Mathematics, 2009, 225(1): 96-104. doi: 10.1016/j.cam.2008.07.018
    [21] RAN M, ZHANG C J. New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order[J]. Applied Numerical Mathematics, 2018, 129: 58-70. doi: 10.1016/j.apnum.2018.03.005
    [22] BU W P, XIAO A G, ZENG W. Finite difference/finite element methods for distributed-order time fractional diffusion equations[J]. Journal of Scientific Computing, 2017, 72(1): 422-441. doi: 10.1007/s10915-017-0360-8
    [23] YIN B L, LIU Y, LI H, et al. Approximation methods for the distributed order calculus using the convolution quadrature[J]. Discrete & Continuous Dynamical Systems B, 2021, 26(3): 1447-1468.
    [24] WEN C, LIU Y, YIN B L, et al. Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model[J]. Numerical Algorithms, 2021, 88(2): 523-553. doi: 10.1007/s11075-020-01048-8
    [25] ZHANG H, LIU F W, JIANG X Y, et al. A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation[J]. Computers & Mathematics With Applications, 2018, 76(10): 2460-2476. http://www.sciencedirect.com/science/article/pii/S0898122118304681
    [26] JIAN H Y, HUANG T Z, GU X M, et al. Fast second-order implicit difference schemes for time distributed-order andRiesz space fractional diffusion-wave equations[J]. Computers & Mathematics With Applications, 2021, 94: 136-154.
    [27] ATANACKOVIC T M, PILIPOVIC S, ZORICA D. Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod[J]. International Journal of Engineering Science, 2011, 49(2): 175-190. doi: 10.1016/j.ijengsci.2010.11.004
    [28] GORENFLO R, LUCHKO Y, STOJANOVIĆ M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density[J]. Fractional Calculus and Applied Analysis, 2013, 16(2): 297-316. doi: 10.2478/s13540-013-0019-6
    [29] YE H, LIU F W, ANH V. Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains[J]. Journal of Computational Physics, 2015, 298: 652-660. doi: 10.1016/j.jcp.2015.06.025
    [30] GAO G H, SUN Z Z. Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations[J]. Journal of Scientific Computing, 2016, 69(2): 506-531. doi: 10.1007/s10915-016-0208-7
    [31] TOMOVSKI Ž, SANDEV T. Distributed-order wave equations with composite time fractional derivative[J]. International Journal of Computer Mathematics, 2018, 95(6/7): 1100-1113.
    [32] HENDY A S, DE STAELEN R H, PIMENOV V G. A semi-linear delayed diffusion-wave system with distributed order in time[J]. Numerical Algorithms, 2018, 77(3): 885-903. doi: 10.1007/s11075-017-0344-7
    [33] DEHGHAN M, ABBASZADEH M. A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation[J]. Mathematical Methods in the Applied Sciences, 2018, 41(9): 3476-3494. doi: 10.1002/mma.4839
    [34] LI X L, RUI H X. A block-centered finite difference method for the distributed-order time-fractional diffusion-wave equation[J]. Applied Numerical Mathematics, 2018, 131: 123-139. doi: 10.1016/j.apnum.2018.04.013
    [35] JANNO J. Determination of time-dependent sources and parameters of nonlocal diffusion and wave equations from final data[J]. Fractional Calculus and Applied Analysis, 2020, 23(6): 1678-1701. doi: 10.1515/fca-2020-0083
    [36] ENGSTRÖM C, GIANI S, GRUBIŠIĆ L. Numerical solution of distributed-order time-fractional diffusion-wave equations using Laplace transforms[J]. Journal of Computational and Applied Mathematics, 2023, 425: 115035. doi: 10.1016/j.cam.2022.115035
    [37] YIN B L, LIU Y, LI H. A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations[J]. Applied Mathematics and Computation, 2020, 368: 124799. doi: 10.1016/j.amc.2019.124799
    [38] LIU Y, DU Y W, LI H, et al. Some second-order θ schemes combined with finite element method for nonlinear fractional cable equation[J]. Numerical Algorithms, 2019, 80(2): 533-555. doi: 10.1007/s11075-018-0496-0
    [39] GHURAIBAWI A A, MARASI H R, DERAKHSHAN M H, et al. An efficient numerical method for the time-fractional distributed order nonlinear Klein-Gordon equation with shifted fractional Gegenbauer multi-wavelets method[J]. Physica Scripta, 2023, 98(8): 084001. doi: 10.1088/1402-4896/accedb
    [40] WANGJ F, YIN B L, LIU Y, et al. Mixed finite element algorithm for a nonlinear time fractional wave model[J]. Mathematics and Computers in Simulation, 2021, 188: 60-76. doi: 10.1016/j.matcom.2021.03.038
    [41] DURÁN R G, LOMBARDI A L. Finite element approximation of convection diffusion problems using graded meshes[J]. Applied Numerical Mathematics, 2006, 56(10/11): 1314-1325.
    [42] STYNES M, O'RIORDAN E, GRACIA J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[J]. SIAM Journal on Numerical Analysis, 2017, 55(2): 1057-1079. doi: 10.1137/16M1082329
    [43] CHEN H B, XU D, ZHOU J. A second-order accurate numerical method with graded meshes for an evolution equation with a weakly singular kernel[J]. Journal of Computational and Applied Mathematics, 2019, 356: 152-163. doi: 10.1016/j.cam.2019.01.031
    [44] YANG Z, ZENG F H. A corrected L1 method for a time-fractional subdiffusion equation[J]. Journal of Scientific Computing, 2023, 95(3): 85. doi: 10.1007/s10915-023-02204-7
    [45] YIN B L, LIU Y, LI H, et al. Efficient shifted fractional trapezoidal rule for subdiffusion problems with nonsmooth solutions on uniform meshes[J]. BIT Numerical Mathematics, 2022, 62(2): 631-666. doi: 10.1007/s10543-021-00890-z
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-17
  • 修回日期:  2024-03-25
  • 刊出日期:  2025-01-01

目录

    /

    返回文章
    返回