留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种精确的含可溶性表面活性剂两相流动相场方法

陈黎明 张良奇 王小双 肖姚 曾忠

陈黎明, 张良奇, 王小双, 肖姚, 曾忠. 一种精确的含可溶性表面活性剂两相流动相场方法[J]. 应用数学和力学, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027
引用本文: 陈黎明, 张良奇, 王小双, 肖姚, 曾忠. 一种精确的含可溶性表面活性剂两相流动相场方法[J]. 应用数学和力学, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027
CHEN Liming, ZHANG Liangqi, WANG Xiaoshuang, XIAO Yao, ZENG Zong. An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027
Citation: CHEN Liming, ZHANG Liangqi, WANG Xiaoshuang, XIAO Yao, ZENG Zong. An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1455-1472. doi: 10.21656/1000-0887.450027

一种精确的含可溶性表面活性剂两相流动相场方法

doi: 10.21656/1000-0887.450027
(我刊编委张良奇、曾忠来稿)
基金项目: 

国家自然科学基金 12102071

国家自然科学基金 12172070

重庆市博士直通车项目 CSTB2022BSXM-JCX0086

详细信息
    作者简介:

    陈黎明(1999—),男,硕士生(E-mail: chenliming0905@163.com)

    通讯作者:

    张良奇(1985—),男,研究员,博士生导师(通讯作者. E-mail: zhangliangqi@cqu.edu.cn)

  • 中图分类号: O359

An Accurate Phase Field Method for 2-Phase Flow With Soluble Surfactants

(Contributed by ZHANG Liangqi, ZENG Zong, M.AMM Editorial Board)
  • 摘要: 基于相场理论,该文提出了一种精确的考虑可溶性表面活性剂作用的两相流相场方法.为保证相界面处动量输运的守恒性,引入一致性的质量通量以考虑相变量扩散对质量守恒的影响,应用有限体积方法离散守恒形式的控制方程;选择五阶WENO格式处理控制方程的对流项,改善界面处理的精度和稳定性.此外,还构造了多组二维差分模板以进一步改善表面张力项中的梯度离散,并证实了对应格子Boltzmann D2Q9模型的模板能够显著降低伪势速度,改善表面活性剂浓度的计算精度.通过对静态液滴、双液滴融合、大密度比气泡上升以及剪切流中的单液滴变形与破裂等问题进行数值研究,充分验证了所提出的两相流相场方法的精度、守恒性与鲁棒性.
    1)  (我刊编委张良奇、曾忠来稿)
  • 图  1  梯度算子模板点示意图

    Figure  1.  The schematic diagram of the template points of the gradient operator

    图  2  数值计算流程图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The flowchart for the numerical calculation

    图  3  静态液滴示意图

    Figure  3.  The schematic diagram of the static droplet

    图  4  静置液滴结果

    Figure  4.  The results of static droplet

    图  5  不同半径不同表面张力系数下液滴内外压差的数值解与理论解的对比

    Figure  5.  Comparison of numerical and theoretical solutions of pressure differences between inside and outside droplets with different radii and different surface tension coefficients

    图  6  R=0.25时相界面分布的数值解与理论解的对比

    Figure  6.  Comparison of numerical and theoretical solutions for the phase interface distribution at R=0.25

    图  7  两个液滴融合的示意图

    Figure  7.  Schematic diagram of the fusion of 2 droplets

    图  8  不同时刻的界面形态

    Figure  8.  The interface morphologies at different moments

    图  9  不同网格分辨率情况下液滴体积随时间的变化

    Figure  9.  The variations of droplet volumes with time for different grid resolutions

    图  10  气泡上升示意图

    Figure  10.  The schematic diagram of bubble rise

    图  11  气泡上升过程中某些时刻的界面形态

    Figure  11.  The interface morphologies at some moments during the rise of the bubble

    图  12  大密度比气泡的上升速度以及质量中心

    Figure  12.  The rising velocity and the centre of mass of the bubble with a large density ratio

    图  13  水平中心线上表面活性剂分布

    Figure  13.  The surfactant distributions on the horizontal centre line

    图  14  剪切流动中的单液滴

    Figure  14.  The schematic diagram of a droplet in shear flow

    图  15  变形系数随时间的变化

    Figure  15.  The deformation coefficient vs. the time

    图  16  剪切流中干净液滴变形系数

    Figure  16.  The deformation coefficient of the clean droplet in shear flow

    图  17  不同表面活性剂浓度对液滴变形系数的影响

    Figure  17.  Effects of different surfactant concentrations on the deformation coefficients of the droplet

    图  18  不同表面活性剂浓度对液滴变形的影响(Ca=0.25)

    Figure  18.  Effects of different surfactant concentrations on droplet deformations (Ca=0.25)

    图  19  不同时刻的干净液滴界面形状(Re=10, Ca=0.35)

    Figure  19.  Interface shapes of the clean droplet at different moments(Re=10, Ca=0.35)

    图  20  不同表面活性剂浓度对液滴破裂的影响

    Figure  20.  Effects of surfactant concentrations on the droplet breakage

    表  1  不同网格分辨率下伪势速度的范数误差

    Table  1.   Errors of the pseudopotential velocity at different grid resolutions

    grid resolution L2 L
    present normal present normal
    32×32 6.314×10-5 3.157×10-4 3.680×10-4 1.418×10-3
    64×64 2.459×10-5 1.585×10-4 1.354×10-4 5.982×10-4
    128×128 3.585×10-5 1.506×10-4 3.732×10-5 2.565×10-4
    下载: 导出CSV

    表  2  水平中心线上表面活性剂分布误差

    Table  2.   Errors of surfactant distributions on the horizontal centreline

    ψb L2 L
    present normal present normal
    0.01 1.163×10-4 1.238×10-4 6.067×10-4 6.631×10-4
    0.05 5.065×10-4 5.433×10-4 2.721×10-3 3.001×10-3
    下载: 导出CSV
  • [1] BELHAJ A F, ELRAIES K A, MAHMOOD S M, et al. The effect of surfactant concentration, salinity, temperature, and pH on surfactant adsorption for chemical enhanced oil recovery: a review[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10(1): 125-137. doi: 10.1007/s13202-019-0685-y
    [2] ROSEN M J, KUNJAPPU J T. Surfactants and Interfacial Phenomena[M]. John Wiley & Sons, 2012.
    [3] STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip[J]. Annual Review of Fluid Mechanics, 2004, 36: 381-411. doi: 10.1146/annurev.fluid.36.050802.122124
    [4] 孙涛, 庞明军, 费洋. 气泡间距对受污染球形气泡界面性质和尾流的影响[J]. 应用数学和力学, 2020, 41(10): 1157-1170. doi: 10.21656/1000-0887.410099

    SUN Tao, PANG Mingjun, FEI Yang. Effects of bubble spacings on interface properties and wake flow for 2 contaminated spherical bubbles[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1157-1170. (in Chinese)) doi: 10.21656/1000-0887.410099
    [5] MANIKANTAN H, SQUIRES T M. Surfactant dynamics: hidden variables controlling fluid flows[J]. Journal of Fluid Mechanics, 2020, 892: P1. doi: 10.1017/jfm.2020.170
    [6] STONE H A. Dynamics of drop deformation and breakup in viscous fluids[J]. Annual Review of Fluid Mechanics, 1994, 26: 65-102. doi: 10.1146/annurev.fl.26.010194.000433
    [7] TRYGGVASON G, BUNNER B, ESMAEELI A, et al. A front-tracking method for the computations of multiphase flow[J]. Journal of Computational Physics, 2001, 169(2): 708-759. doi: 10.1006/jcph.2001.6726
    [8] MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
    [9] STONE H A, LEAL L G. The effects of surfactants on drop deformation and breakup[J]. Journal of Fluid Mechanics, 1990, 220: 161-186. doi: 10.1017/S0022112090003226
    [10] MILLIKEN W J, LEAL L G. The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility[J]. Journal of Colloid and Interface Science, 1994, 166(2): 275-285. doi: 10.1006/jcis.1994.1296
    [11] MURADOGLU M, TRYGGVASON G. A front-tracking method for computation of interfacial flows with soluble surfactants[J]. Journal of Computational Physics, 2008, 227(4): 2238-2262. doi: 10.1016/j.jcp.2007.10.003
    [12] LUO Z Y, SHANG X L, BAI B F. Effect of soluble surfactant on the motion of a confined droplet in a square microchannel[J]. Physics of Fluids, 2019, 31(11): 117104. doi: 10.1063/1.5125949
    [13] LUO Z Y, SHANG X L, BAI B F. Marangoni effect on the motion of a droplet covered with insoluble surfactant in a square microchannel[J]. Physics of Fluids, 2018, 30(7): 077101. doi: 10.1063/1.5026874
    [14] LAI M C, TSENG Y H, HUANG H. An immersed boundary method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2008, 227(15): 7279-7293. doi: 10.1016/j.jcp.2008.04.014
    [15] LAI M C, TSENG Y H, HUANG H. Numerical simulation of moving contact lines with surfactant by immersed boundary method[J]. Communications in Computational Physics, 2010, 8(4): 735-757. doi: 10.4208/cicp.281009.120210a
    [16] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [17] OSHER S, FEDKIW R P. Level set methods: an overview and some recent results[J]. Journal of Computational Physics, 2001, 169(2): 463-502. doi: 10.1006/jcph.2000.6636
    [18] JACQMIN D. Calculation of two-phase Navier-Stokes flows using phase-field modeling[J]. Journal of Computational Physics, 1999, 155(1): 96-127. doi: 10.1006/jcph.1999.6332
    [19] RENARDY Y Y, RENARDY M, CRISTINI V. A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio[J]. European Journal of Mechanics B: Fluids, 2002, 21(1): 49-59. doi: 10.1016/S0997-7546(01)01159-1
    [20] JAMES A J, LOWENGRUB J. A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant[J]. Journal of Computational Physics, 2004, 201(2): 685-722. doi: 10.1016/j.jcp.2004.06.013
    [21] XU J J, LI Z, LOWENGRUB J, et al. A level-set method for interfacial flows with surfactant[J]. Journal of Computational Physics, 2006, 212(2): 590-616. doi: 10.1016/j.jcp.2005.07.016
    [22] LARADJI M, GUO H, GRANT M, et al. The effect of surfactants on the dynamics of phase separation[J]. Journal of Physics: Condensed Matter, 1992, 4(32): 6715-6728. doi: 10.1088/0953-8984/4/32/006
    [23] LIU H H, ZHANG Y H. Phase-field modeling droplet dynamics with soluble surfactants[J]. Journal of Computational Physics, 2010, 229(24): 9166-9187. doi: 10.1016/j.jcp.2010.08.031
    [24] ENGBLOM S, DO-QUANG M, AMBERG G, et al. On diffuse interface modeling and simulation of surfactants in two-phase fluid flow[J]. Communications in Computational Physics, 2013, 14(4): 879-915. doi: 10.4208/cicp.120712.281212a
    [25] SOLIGO G, ROCCON A, SOLDATI A. Coalescence of surfactant-laden drops by phase field method[J]. Journal of Computational Physics, 2019, 376: 1292-1311. doi: 10.1016/j.jcp.2018.10.021
    [26] ZHU G P, KOU J S, YAO B W, et al. Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants[J]. Journal of Fluid Mechanics, 2019, 879: 327-359. doi: 10.1017/jfm.2019.664
    [27] ZONG Y J, ZHANG C H, LIANG H, et al. Modeling surfactant-laden droplet dynamics by lattice Boltzmann method[J]. Physics of Fluids, 2020, 32(12): 122105. doi: 10.1063/5.0028554
    [28] ZHOU W N, XING Y F, LIU X L, et al. Modeling of droplet dynamics with soluble surfactant by multi-relaxation-time phase-field lattice Boltzmann method[J]. Physics of Fluids, 2023, 35(1): 012109. doi: 10.1063/5.0132174
    [29] GUO Z, LIN P. A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects[J]. Journal of Fluid Mechanics, 2015, 766: 226-271. doi: 10.1017/jfm.2014.696
    [30] 李家宇, 曾忠, 乔龙. 相场方法模拟液滴的动态润湿行为[J]. 应用数学和力学, 2019, 40(9): 957-967. doi: 10.21656/1000-0887.400129

    LI Jiayu, ZENG Zhong, QIAO Long. Numerical simulation of droplets' dynamic wetting process with the phase field method[J]. Applied Mathematics and Mechanics, 2019, 40(9): 957-967. (in Chinese)) doi: 10.21656/1000-0887.400129
    [31] TANG T, QIAO Z H. Efficient numerical methods for phase-field equations[J]. Scientia Sinica Mathematica, 2020, 50(6): 775. doi: 10.1360/SSM-2020-0042
    [32] YUE P T, ZHOU C F, FENG J J. Spontaneous shrinkage of drops and mass conservation in phase-field simulations[J]. Journal of Computational Physics, 2007, 223(1): 1-9. doi: 10.1016/j.jcp.2006.11.020
    [33] HUANG Z Y, LIN G, ARDEKANI A M. Consistent, essentially conservative and balanced-force phase-field method to model incompressible two-phase flows[J]. Journal of Computational Physics, 2020, 406: 109192. doi: 10.1016/j.jcp.2019.109192
    [34] DONG S, SHEN J. A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios[J]. Journal of Computational Physics, 2012, 231(17): 5788-5804. doi: 10.1016/j.jcp.2012.04.041
    [35] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130
    [36] YUN A, LI Y B, KIM J. A new phase-field model for a water-oil-surfactant system[J]. Applied Mathematics and Computation, 2014, 229: 422-432. doi: 10.1016/j.amc.2013.12.054
    [37] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. doi: 10.1016/0021-9991(92)90240-Y
    [38] LIU H H, WU L, BA Y, et al. A lattice Boltzmann method for axisymmetric thermocapillary flows[J]. International Journal of Heat and Mass Transfer, 2017, 104: 337-350. doi: 10.1016/j.ijheatmasstransfer.2016.08.068
    [39] CHANG C H, FRANSES E I. Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1995, 100: 1-45.
    [40] YUE L Q, CHAI Z H, WANG H L, et al. Improved phase-field-based lattice Boltzmann method for thermocapillary flow[J]. Physical Review E, 2022, 105(1/2): 015314.
    [41] GUERMOND J L, MINEV P, SHEN J. An overview of projection methods for incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44/47): 6011-6045.
    [42] POPINET S. Numerical models of surface tension[J]. Annual Review of Fluid Mechanics, 2018, 50: 49-75. doi: 10.1146/annurev-fluid-122316-045034
    [43] CHEN Z, SHU C, TAN D, et al. Simplified multiphase lattice Boltzmann method for simulating multiphase flows with large density ratios and complex interfaces[J]. Physical Review E, 2018, 98(6): 063314. doi: 10.1103/PhysRevE.98.063314
    [44] XIAO Y, ZENG Z, ZHANG L Q, et al. A spectral element-based phase field method for incompressible two-phase flows[J]. Physics of Fluid, 2022, 34(2): 022114. doi: 10.1063/5.0077372
    [45] ALAND S, VOIGT A. Benchmark computations of diffuse interface models for two-dimensional bubble dynamics[J]. International Journal for Numerical Methods in Fluids, 2012, 69(3): 747-761. doi: 10.1002/fld.2611
    [46] TAYLOR G I. The formation of emulsions in definable fields of flow[J]. Proceedings of the Royal Society of London (Series A): Containing Papers of a Mathematical and Physical Character, 1934, 146(858): 501-523.
    [47] SHAPIRA M, HABER S. Low Reynolds number motion of a droplet in shear flow including wall effects[J]. International Journal of Multiphase Flow, 1990, 16(2): 305-321. doi: 10.1016/0301-9322(90)90061-M
    [48] ZHOU H, POZRIKIDIS C. The flow of suspensions in channels: single files of drops[J]. Physics of Fluids A: Fluid Dynamics, 1993, 5(2): 311-324. doi: 10.1063/1.858893
    [49] LI J, RENARDY Y Y, RENARDY M. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method[J]. Physics of Fluids, 2000, 12(2): 269-282. doi: 10.1063/1.870305
    [50] SOLIGO G, ROCCON A, SOLDATI A. Deformation of clean and surfactant-laden droplets in shear flow[J]. Meccanica, 2020, 55(2): 371-386. doi: 10.1007/s11012-019-00990-9
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  38
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-03-24
  • 刊出日期:  2024-12-01

目录

    /

    返回文章
    返回