[1] |
PRAJWAL P, GHUKU S, MUKHOPADHYAY T. Large-deformation mechanics of anti-curvature lattice materials for mode-dependent enhancement of non-linear shear modulus[J]. Mechanics of Materials, 2022, 171: 104337. doi: 10.1016/j.mechmat.2022.104337
|
[2] |
QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: a review[J]. Composites Part B: Engineering, 2021, 227: 109393. doi: 10.1016/j.compositesb.2021.109393
|
[3] |
CHI Z Y, LIU J X, SOH A K. Micropolar modeling of a typical bending-dominant lattice comprising zigzag beams[J]. Mechanics of Materials, 2021, 160: 103922. doi: 10.1016/j.mechmat.2021.103922
|
[4] |
KUMAR B, BANERJEE A, DAS R, et al. Frequency dependent effective modulus of square grid lattice using spectral element method[J]. Mechanics of Materials, 2023, 184: 104695. doi: 10.1016/j.mechmat.2023.104695
|
[5] |
CHEN Z, WU X, XIE Y M, et al. Re-entrant auxetic lattices with enhanced stiffness: a numerical study[J]. International Journal of Mechanical Sciences, 2020, 178: 105619. doi: 10.1016/j.ijmecsci.2020.105619
|
[6] |
LI X, LU Z, YANG Z, et al. Yield surfaces of periodic honeycombs with tunable Poisson's ratio[J]. International Journal of Mechanical Sciences, 2018, 141: 290-302. doi: 10.1016/j.ijmecsci.2018.04.005
|
[7] |
AN X, YUAN X, FAN H. Meta-Kagome lattice structures for broadband vibration isolation[J]. Engineering Structures, 2023, 277: 115403. doi: 10.1016/j.engstruct.2022.115403
|
[8] |
DENG J, GUASCH O. Sound waves in continuum models of periodic sonic black holes[J]. Mechanical Systems and Signal Processing, 2023, 205: 110853. doi: 10.1016/j.ymssp.2023.110853
|
[9] |
KARLIČIĆ D, CAJIĆ M, CHATTERJEE T, et al. Wave propagation in mass embedded and pre-stressed hexagonal lattices[J]. Composite Structures, 2021, 256: 113087. doi: 10.1016/j.compstruct.2020.113087
|
[10] |
LI X F, CHENG S L, YANG H Y, et al. Integrated analysis of bandgap optimization regulation and wave propagation mechanism of hexagonal multi-ligament derived structures[J]. European Journal of Mechanics A: Solids, 2023, 99: 104952. doi: 10.1016/j.euromechsol.2023.104952
|
[11] |
LIU J X, DENG S C, ZHANG J, et al. Lattice type of fracture model for concrete[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(3): 269-284. doi: 10.1016/j.tafmec.2007.08.008
|
[12] |
LIU K J, LIU H T, ZHEN D. Mechanical and bandgap properties of 3D bi-material triangle re-entrant honeycomb[J]. International Journal of Mechanical Sciences, 2024, 261: 108664. doi: 10.1016/j.ijmecsci.2023.108664
|
[13] |
WANG B Y, LIU J X, SOH A K, et al. Exact strain gradient modelling of prestressed nonlocal diatomic lattice metamaterials[J]. Mechanics of Advanced Materials and Structures, 2023, 30(13): 2718-2734. doi: 10.1080/15376494.2022.2062629
|
[14] |
WANG B Y, LIU J X, SOH A K, et al. On band gaps of nonlocal acoustic lattice metamaterials: a robust strain gradient model[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 1-20. doi: 10.1007/s10483-021-2795-5
|
[15] |
WANG B Y, LIU J X. Padé-based strain gradient modeling of bandgaps in two-dimensional acoustic lattice metamaterials[J]. International Journal of Applied Mechanics, 2023, 15(2): 2350006. doi: 10.1142/S1758825123500060
|
[16] |
杨访. 手性声学超材料的带隙特性及减振性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.YANG Fang. Research on the bandgap characteristics and vibration absorption properties of chiral acoustic metamaterials[D]. Harbin: Harbin Engineering University, 2022. (in Chinese)
|
[17] |
WILLIAMS F W, WITTRICK W H. An automatic computational procedure for calculating natural frequencies of skeletal structures[J]. International Journal of Mechanical Sciences, 1970, 12(9): 781-791. doi: 10.1016/0020-7403(70)90053-6
|
[18] |
WITTRICK W H, WILLIAMS F W. A general algorithm for computing natural frequencies of elastic structures[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(3): 263-284. doi: 10.1093/qjmam/24.3.263
|
[19] |
钟万勰, 吴志刚, 高强, 等. H∞分散控制系统范数计算的模态综合法(Ⅰ)[J]. 应用数学和力学, 2004, 25(2): 111-120. http://www.applmathmech.cn/article/id/22ZHONG Wanxie, WU Zhigang, GAO Qiang, et al. Modal synthesis method for norm computation of H∞ decentralized control systems (Ⅰ)[J]. Applied Mathematics and Mechanics, 2004, 25(2): 111-120. (in Chinese) http://www.applmathmech.cn/article/id/22
|
[20] |
钟万勰, 吴志刚, 高强, 等. H∞分散控制系统范数计算的模态综合法(Ⅱ)[J]. 应用数学和力学, 2004, 25(2): 121-127. http://www.applmathmech.cn/article/id/23ZHONG Wanxie, WU Zhigang, GAO Qiang, et al. Modal synthesis method for norm computation of H∞ decentralized control systems (Ⅱ)[J]. Applied Mathematics and Mechanics, 2004, 25(2): 121-127. (in Chinese) http://www.applmathmech.cn/article/id/23
|
[21] |
周平. 基于动态刚度阵法的船舶结构振动特性分析[D]. 大连: 大连理工大学, 2006.ZHOU Ping. Analysis of vibration characteristic for ship structure by dynamic stiffness matrix method[D]. Dalian: Dalian University of Technology, 2006. (in Chinese)
|
[22] |
LIU X, LU Z, ADHIKARI S, et al. Exact wave propagation analysis of lattice structures based on the dynamic stiffness method and the Wittrick-Williams algorithm[J]. Mechanical Systems and Signal Processing, 2022, 174: 109044. doi: 10.1016/j.ymssp.2022.109044
|
[23] |
ADHIKARI S, MUKHOPADHYAY T, LIU X. Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approach[J]. Mechanics of Materials, 2021, 157: 103796. doi: 10.1016/j.mechmat.2021.103796
|