留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动力刚度理论和Wittrick-Williams算法的多段梁点阵色散研究

彭长清 刘金兴

彭长清, 刘金兴. 基于动力刚度理论和Wittrick-Williams算法的多段梁点阵色散研究[J]. 应用数学和力学, 2025, 46(2): 154-164. doi: 10.21656/1000-0887.450043
引用本文: 彭长清, 刘金兴. 基于动力刚度理论和Wittrick-Williams算法的多段梁点阵色散研究[J]. 应用数学和力学, 2025, 46(2): 154-164. doi: 10.21656/1000-0887.450043
PENG Changqing, LIU Jinxing. Research on Dispersion Characteristics of Multi-Segment Beam Lattices Based on the Dynamic Stiffness Theory and the Wittrick-Williams Algorithm[J]. Applied Mathematics and Mechanics, 2025, 46(2): 154-164. doi: 10.21656/1000-0887.450043
Citation: PENG Changqing, LIU Jinxing. Research on Dispersion Characteristics of Multi-Segment Beam Lattices Based on the Dynamic Stiffness Theory and the Wittrick-Williams Algorithm[J]. Applied Mathematics and Mechanics, 2025, 46(2): 154-164. doi: 10.21656/1000-0887.450043

基于动力刚度理论和Wittrick-Williams算法的多段梁点阵色散研究

doi: 10.21656/1000-0887.450043
基金项目: 

国家自然科学基金 11972174

详细信息
    作者简介:

    彭长清(1998—),男,硕士生(E-mail: changqing9810@163.com)

    通讯作者:

    刘金兴(1979—),男,教授(通讯作者. E-mail: jxliu@mails.ucas.ac.cn)

  • 中图分类号: O32

Research on Dispersion Characteristics of Multi-Segment Beam Lattices Based on the Dynamic Stiffness Theory and the Wittrick-Williams Algorithm

  • 摘要: 基于动力刚度法(DSM)表述了多段梁(MSB)点阵的动态响应,进而利用Wittrick-Williams(WW)算法计算其各阶固有频率. 首先,根据MSB内部节点处的位移与应力连续条件,以分块矩阵组装的形式得到了MSB的动力刚度矩阵. 利用这种方法获得的MSB动力刚度矩阵仍然是两节点式,并不会增大刚度矩阵的维度. WW算法与动力刚度矩阵的结合可以精确求解点阵的各阶固有频率. 针对MSB点阵的周期性胞元,在原始动力刚度矩阵中考虑Floquet边界条件,再采取WW算法并最终得到了相应点阵的色散曲线. 在不可约Brillouin区内,利用该法算得的色散曲线与基于COMSOL仿真的结果相比,两者误差在6%以内,验证了所建方法的可行性. 进而系统研究了微观几何和材料参数对色散曲线的影响规律,结果表明使用MSB搭建点阵是调节点阵色散特性的有效方法.
  • 图  1  三段梁模型以及各个分段的受力情况

    Figure  1.  The 3-segment beam and the forces on each segment

    图  2  模型Ⅰ和模型Ⅱ

    Figure  2.  Modle Ⅰ and modle Ⅱ

    图  3  分别考虑为普通梁和三段梁,使用本文方法以及FEM得到的两个模型的色散曲线

    Figure  3.  The dispersion curves of the 2 models considered respectively for the 1-segment beam and the 3-segment beam, in comparison with the results of the finite element model

    图  4  两个模型色散曲线受到中间段宽度t2的影响(t1=0.003 m, l2/l=1/3)

    Figure  4.  The dispersion curves of the 2 models with different width t2 values of the middle segment (t1=0.003 m, l2/l=1/3)

    图  5  两个模型色散曲线受到中间段长度l2的影响(t1=0.003 m)

    Figure  5.  The dispersion curves of the 2 models with different length l2 values of the middle segment (t1=0.003 m)

    图  6  两个模型色散曲线受到中间段密度ρ2的影响(ρ1=2 500 kg/m3, t1=0.003 m, t2=0.003 m, l2/l=1/3)

    Figure  6.  The dispersion curves of the 2 models with different density ρ2 values of the middle segment (ρ1=2 500 kg/m3, t1=0.003 m, t2=0.003 m, l2/l=1/3)

    图  7  两个模型色散曲线受到中间段弹性模量E2的影响(E1=2.1×1010 Pa, t1=0.003 m, t2=0.003 m, l2/l=1/3)

    Figure  7.  The dispersion curves of the 2 models with different Young's modulus E2 values of the middle segment (E1=2.1×1010 Pa, t1=0.003 m, t2=0.003 m, l2/l=1/3)

  • [1] PRAJWAL P, GHUKU S, MUKHOPADHYAY T. Large-deformation mechanics of anti-curvature lattice materials for mode-dependent enhancement of non-linear shear modulus[J]. Mechanics of Materials, 2022, 171: 104337. doi: 10.1016/j.mechmat.2022.104337
    [2] QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: a review[J]. Composites Part B: Engineering, 2021, 227: 109393. doi: 10.1016/j.compositesb.2021.109393
    [3] CHI Z Y, LIU J X, SOH A K. Micropolar modeling of a typical bending-dominant lattice comprising zigzag beams[J]. Mechanics of Materials, 2021, 160: 103922. doi: 10.1016/j.mechmat.2021.103922
    [4] KUMAR B, BANERJEE A, DAS R, et al. Frequency dependent effective modulus of square grid lattice using spectral element method[J]. Mechanics of Materials, 2023, 184: 104695. doi: 10.1016/j.mechmat.2023.104695
    [5] CHEN Z, WU X, XIE Y M, et al. Re-entrant auxetic lattices with enhanced stiffness: a numerical study[J]. International Journal of Mechanical Sciences, 2020, 178: 105619. doi: 10.1016/j.ijmecsci.2020.105619
    [6] LI X, LU Z, YANG Z, et al. Yield surfaces of periodic honeycombs with tunable Poisson's ratio[J]. International Journal of Mechanical Sciences, 2018, 141: 290-302. doi: 10.1016/j.ijmecsci.2018.04.005
    [7] AN X, YUAN X, FAN H. Meta-Kagome lattice structures for broadband vibration isolation[J]. Engineering Structures, 2023, 277: 115403. doi: 10.1016/j.engstruct.2022.115403
    [8] DENG J, GUASCH O. Sound waves in continuum models of periodic sonic black holes[J]. Mechanical Systems and Signal Processing, 2023, 205: 110853. doi: 10.1016/j.ymssp.2023.110853
    [9] KARLIČIĆ D, CAJIĆ M, CHATTERJEE T, et al. Wave propagation in mass embedded and pre-stressed hexagonal lattices[J]. Composite Structures, 2021, 256: 113087. doi: 10.1016/j.compstruct.2020.113087
    [10] LI X F, CHENG S L, YANG H Y, et al. Integrated analysis of bandgap optimization regulation and wave propagation mechanism of hexagonal multi-ligament derived structures[J]. European Journal of Mechanics A: Solids, 2023, 99: 104952. doi: 10.1016/j.euromechsol.2023.104952
    [11] LIU J X, DENG S C, ZHANG J, et al. Lattice type of fracture model for concrete[J]. Theoretical and Applied Fracture Mechanics, 2007, 48(3): 269-284. doi: 10.1016/j.tafmec.2007.08.008
    [12] LIU K J, LIU H T, ZHEN D. Mechanical and bandgap properties of 3D bi-material triangle re-entrant honeycomb[J]. International Journal of Mechanical Sciences, 2024, 261: 108664. doi: 10.1016/j.ijmecsci.2023.108664
    [13] WANG B Y, LIU J X, SOH A K, et al. Exact strain gradient modelling of prestressed nonlocal diatomic lattice metamaterials[J]. Mechanics of Advanced Materials and Structures, 2023, 30(13): 2718-2734. doi: 10.1080/15376494.2022.2062629
    [14] WANG B Y, LIU J X, SOH A K, et al. On band gaps of nonlocal acoustic lattice metamaterials: a robust strain gradient model[J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 1-20. doi: 10.1007/s10483-021-2795-5
    [15] WANG B Y, LIU J X. Padé-based strain gradient modeling of bandgaps in two-dimensional acoustic lattice metamaterials[J]. International Journal of Applied Mechanics, 2023, 15(2): 2350006. doi: 10.1142/S1758825123500060
    [16] 杨访. 手性声学超材料的带隙特性及减振性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.

    YANG Fang. Research on the bandgap characteristics and vibration absorption properties of chiral acoustic metamaterials[D]. Harbin: Harbin Engineering University, 2022. (in Chinese)
    [17] WILLIAMS F W, WITTRICK W H. An automatic computational procedure for calculating natural frequencies of skeletal structures[J]. International Journal of Mechanical Sciences, 1970, 12(9): 781-791. doi: 10.1016/0020-7403(70)90053-6
    [18] WITTRICK W H, WILLIAMS F W. A general algorithm for computing natural frequencies of elastic structures[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1971, 24(3): 263-284. doi: 10.1093/qjmam/24.3.263
    [19] 钟万勰, 吴志刚, 高强, 等. H分散控制系统范数计算的模态综合法(Ⅰ)[J]. 应用数学和力学, 2004, 25(2): 111-120. http://www.applmathmech.cn/article/id/22

    ZHONG Wanxie, WU Zhigang, GAO Qiang, et al. Modal synthesis method for norm computation of H decentralized control systems (Ⅰ)[J]. Applied Mathematics and Mechanics, 2004, 25(2): 111-120. (in Chinese) http://www.applmathmech.cn/article/id/22
    [20] 钟万勰, 吴志刚, 高强, 等. H分散控制系统范数计算的模态综合法(Ⅱ)[J]. 应用数学和力学, 2004, 25(2): 121-127. http://www.applmathmech.cn/article/id/23

    ZHONG Wanxie, WU Zhigang, GAO Qiang, et al. Modal synthesis method for norm computation of H decentralized control systems (Ⅱ)[J]. Applied Mathematics and Mechanics, 2004, 25(2): 121-127. (in Chinese) http://www.applmathmech.cn/article/id/23
    [21] 周平. 基于动态刚度阵法的船舶结构振动特性分析[D]. 大连: 大连理工大学, 2006.

    ZHOU Ping. Analysis of vibration characteristic for ship structure by dynamic stiffness matrix method[D]. Dalian: Dalian University of Technology, 2006. (in Chinese)
    [22] LIU X, LU Z, ADHIKARI S, et al. Exact wave propagation analysis of lattice structures based on the dynamic stiffness method and the Wittrick-Williams algorithm[J]. Mechanical Systems and Signal Processing, 2022, 174: 109044. doi: 10.1016/j.ymssp.2022.109044
    [23] ADHIKARI S, MUKHOPADHYAY T, LIU X. Broadband dynamic elastic moduli of honeycomb lattice materials: a generalized analytical approach[J]. Mechanics of Materials, 2021, 157: 103796. doi: 10.1016/j.mechmat.2021.103796
  • 加载中
图(7)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  29
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-03-18
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回