留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题

姜丽娟 刘官厅 高媛媛 王程颜 郭怀民

姜丽娟, 刘官厅, 高媛媛, 王程颜, 郭怀民. 磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题[J]. 应用数学和力学, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180
引用本文: 姜丽娟, 刘官厅, 高媛媛, 王程颜, 郭怀民. 磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题[J]. 应用数学和力学, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180
JIANG Lijuan, LIU Guanting, GAO Yuanyuan, WANG Ghengyan, GUO Huaimin. An Antiplane Problem of Magnetoelectroelastic Materials With Nanoscale LipShaped Orifice With 2 Asymmetric Cracks[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180
Citation: JIANG Lijuan, LIU Guanting, GAO Yuanyuan, WANG Ghengyan, GUO Huaimin. An Antiplane Problem of Magnetoelectroelastic Materials With Nanoscale LipShaped Orifice With 2 Asymmetric Cracks[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1332-1344. doi: 10.21656/1000-0887.450180

磁电弹性材料含纳米尺度唇口次生两不对称裂纹的反平面问题

doi: 10.21656/1000-0887.450180
基金项目: 

国家自然科学基金(12162027);内蒙古自然科学基金重点项目(2024ZD21);内蒙古自治区高等学校科学技术研究自然科学重点项目(NJZZ22574);内蒙古自然科学基金(2023LHMS01017);内蒙古自治区高等学校科学技术研究自然科学一般项目(NJZY23089)

详细信息
    作者简介:

    姜丽娟(1990—),女,讲师,博士生(E-mail: 1530284866@qq.com);刘官厅(1966—),男,博士(通讯作者. E-mail: guantingliu@imnu.edu.cn).

    通讯作者:

    刘官厅(1966—),男,博士(通讯作者. E-mail: guantingliu@imnu.edu.cn).

  • 中图分类号: O346.1

An Antiplane Problem of Magnetoelectroelastic Materials With Nanoscale LipShaped Orifice With 2 Asymmetric Cracks

Funds: 

The National Science Foundation of China(12162027)

  • 摘要: 基于Gurtin-Murdoch表面弹性理论和磁电弹性(MEE)理论,利用解析函数的保角映射技术,研究了反平面机械载荷和面内电磁载荷作用下,MEE材料中含有纳米尺度唇口次生两不对称裂纹的断裂行为,给出了缺陷(裂纹和唇口孔)周围广义MEE应力场和裂纹尖端MEE场强度因子以及能量释放率的解析解.在特殊条件下,所得结果退化为已有结果或者给出新的结果.数值算例揭示了缺陷表面效应对裂纹尖端MEE场强度因子的影响与纳米圆孔半径、唇口孔的大小、唇口次生裂纹大小,以及外加的机-电-磁载荷有关,也揭示了考虑表面效应时,无量纲能量释放率随唇口宽度、无穷远处机械载荷、电载荷和磁载荷的变化而变化.
  • [2]VALENTE J, OU J Y, PLUM E, et al. A magneto-electro-optical effect in a plasmonic nanowire material[J].Nature Communications,2015,6: 7021.
    SUCHTELEN J V. Product properties: a new application of composite materials[J].Philips Research Reports,1972,27(1): 28-37.
    [3]LIU L L, FENG W J. Dugdale plastic zone model of a penny-shaped crack in a magnetoelectroelastic cylinder under magnetoelectroelastic loads[J].Archive of Applied Mechanics,2019,89(2): 291-305.
    [4]HU K Q, ZHONG Z, CHEN Z T. Interface crack between magnetoelectroelastic and orthotropic half-spaces under anti-plane loading[J].Theoretical and Applied Fracture Mechanics,2019,99: 95-103.
    [5]XIAO J H, XU Y L, ZHANG F C. Fracture analysis of magnetoelectroelastic solid weakened by periodic cracks and line inclusions[J].Engineering Fracture Mechanics,2019,205: 70-80.
    [6]AYATOLLAHI M, MONFARED M M, NOURAZAR M. Analysis of multiple moving mode-Ⅲ cracks in a functionally graded magnetoelectroelastic half-plane[J].Journal of Intelligent Material Systems and Structures,2017,28(19): 2823-2834.
    [7]MA P, SU R K L, FENG W J. Moving crack with a contact zone at interface of magnetoelectroelastic bimaterial[J].Engineering Fracture Mechanics,2017,181: 143-160.
    [8]ZHAO M H, ZHANG Q Y, LI X F, et al. An iterative approach for analysis of cracks with exact boundary conditions in finite magnetoelectroelastic solids[J].Smart Materials and Structures,2019,28(5): 055025.
    [9]XIAO J, XU Y, ZHANG F. Surface effects of electroelastic tip fields of multiple cracks emanating from a circular hole[J].Engineering Fracture Mechanics,2020,236: 107219.
    [10]YANG Y, HU Z L, LI X F. Nanoscale mode-Ⅲ interface crack in a bimaterial with surface elasticity[J].Mechanics of Materials,2020,140: 103246.
    [11]GURTIN M E, MURDOCH A I. A continuum theory of elastic material surfaces[J].Archive for Rational Mechanics and Analysis,1975,57(4): 291-323.
    [12]GURTIN M E, MURDOCH A I. Surface stress in solids[J].International Journal of Solids and Structures,1978,14(6): 431-440.
    [13]GURTIN M E, WEISSMLLER J, LARCH F. A general theory of curved deformable interfaces in solids at equilibrium[J].Philosophical Magazine A,1998,78(5): 1093-1109.
    [14]DINEVA P, STOYNOV Y, RANGELOV T. Dynamic fracture behavior of nanocracked graded magnetoelectroelastic solid[J].Archive of Applied Mechanics,2021,91(4): 1495-1508.
    [15]YANG D S, LIU G T. Anti-plane fracture problem of three nano-cracks emanating from a magnetoelectrically permeable regular triangle nano-hole in magnetoelectroelastic materials[J].Modern Physics Letters B,2021,35(7): 2150127.
    [16]杨东升, 刘官厅. 磁电弹性材料中含有带四条纳米裂纹的正4n边形纳米孔的反平面断裂问题[J]. 物理学报, 2020,69(24): 181-190. (YANG Dongsheng, LIU Guanting. Anti-plane fracture problem of four nano-cracks emanating from a regular 4n-polygon nano-hole in magnetoelectroelastic materials[J].Acta Physica Sinica,2020,69(24): 181-190. (in Chinese))
    [17]XIAO J H, FENG G Y, SU M Y, et al. Fracture analysis on periodic radial cracks emanating from a nano-hole with surface effects in magnetoelectroelastic materials[J].Engineering Fracture Mechanics,2021,258: 108115.
    [18]XIAO J H, XU B X, XU Y L, et al. Fracture analysis on a cracked elliptical hole with surface effect in magnetoelectroelastic solid[J].Theoretical and Applied Fracture Mechanics,2020,107: 102532.
    [19]GUO J H, HE L T, LIU Y Z, et al. Anti-plane analysis of a reinforced nano-elliptical cavity or nano-crack in a magnetoelectroelastic matrix with surface effect[J].Theoretical and Applied Fracture Mechanics,2020,107: 102553.
    [20]LIU Y Z, GUO J H, and ZHANG X Y. Surface effect on a nano-elliptical hole or nano-crack in magnetoelectroelastic materials under antiplane shear[J].ZAMM Journal of Applied Mathematics and Mechanics,2019,99(7): e201900043.
    [21]XIAO J H, XU B X, XU Y L, et al. The generalized self-consistent micromechanics prediction of the magnetoelectroelastic properties of multi-coated nanocomposites with surface effect[J].Smart Materials and Structures,2019,28(5): 055004.
    [22]WU Z L, LIU G T, YANG D S. Anti-plane fracture behavior ofn nano-cracks emanating from a magnetoelectrically semi-permeable regularn-polygon nano-hole in magnetoelectroelastic materials[J].International Journal of Modern Physics B,2024,38(14): 2450170.
    [23]XIAO J H, XIN Y Y. Fracture analysis of circular hole edge arbitrary position crack with surface effects in magnetoelectroelastic materials[J].Mathematics and Mechanics of Solids,2023,28(10): 2202-2214.
    [24]肖俊华, 信玉岩. 磁电弹性体中纳米孔边任意位置贯穿裂纹的解析解[J]. 固体力学学报, 2024,45(1): 61-73. (XIAO Junhua, XIN Yuyan. Analytical solution of an arbitrary-location through crack emanating from a nano-hole in magneto-electro-elastic materials[J].Chinese Journal of Solid Mechanics,2024,45(1): 61-73. (in Chinese))
    [25]范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003. (FAN Tianyou.Foundation of Fracture Mechanics[M]. Beijing: Science Press, 2003. (in Chinese))
    [26]匡震邦. 只有尖点的平面曲边多角形缺陷的应力分析[J]. 力学学报, 1979,15(2): 118-128. (KUANG Zhenbang. Stress analysis for plane curved polygonal defects containing cusps only[J].Acta Mechanica Sinica,1979,15(2): 118-128. (in Chinese))
    [27]刘鑫, 郭俊宏, 于静. 磁电弹性材料中唇形裂纹反平面问题[J]. 内蒙古大学学报(自然科学版), 2016,47(1): 37-45. (LIU Xin, GUO Junhong, YU Jing. Anti-plane problem of a lip-shaped crack in a magnetoelectro-elastic material[J].Journal of Inner Mongolia University (Natural Science Edition), 2016,47(1): 37-45. (in Chinese))
    [28]GUO H M, ZHAO G Z, JIANG L J. Screw dislocation interacting with lip-shaped crack in magnetoelectroelastic media[J].Chinese Journal of Computational Physics,2022,39(1): 33-40.
    [29]郭怀民, 赵国忠, 刘官厅, 等. 含唇口次生两不对称裂纹的一维六方压电准晶体的反平面剪切问题[J]. 固体力学学报, 2024,45(1): 123-134. (GUO Huaimin, ZHAO Guozhong, LIU Guanting, et al. The anti-plane shear problem of a lip-shaped orifice with two asymmetric edge rips in the one-dimensional hexagonal piezoelectric quasicrystal material[J].Chinese Journal of Solid Mechanics,2024,45(1): 123-134. (in Chinese)).
    [30]МУСХЕЛИШВИЛИ Н И. 数学弹性力学的几个基本问题[M]. 赵惠元, 译. 北京: 科学出版社, 1958. (МУСХЕЛИШВИЛИ Н И.Some Basic Problems of Mathematical Theory of Elasticity[M]. ZHAO Huiyuan, transl. Beijing: Science Press, 1958. (in Chinese))
    [31]GUO J H, LU Z X. Anti-plane analysis of multiple cracks originating from a circular hole in a magnetoelectroelastic solid[J].International Journal of Solids and Structures,2010,47(14/15): 1847-1856.
    [32]CHEN T. Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[J].Acta Mechanica,2008,196(3): 205-217.
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  14
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2204-07-28
  • 网络出版日期:  2024-10-31
  • 刊出日期:  2024-10-01

目录

    /

    返回文章
    返回