留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Maxwell流体在有限长管道中作不稳定的蠕动传输:食道吞咽进程分析

S·K·潘迪 D·特里帕蒂

S·K·潘迪, D·特里帕蒂. Maxwell流体在有限长管道中作不稳定的蠕动传输:食道吞咽进程分析[J]. 应用数学和力学, 2012, 33(1): 14-23. doi: 10.3879/j.issn.1000-0887.2012.01.002
引用本文: S·K·潘迪, D·特里帕蒂. Maxwell流体在有限长管道中作不稳定的蠕动传输:食道吞咽进程分析[J]. 应用数学和力学, 2012, 33(1): 14-23. doi: 10.3879/j.issn.1000-0887.2012.01.002
S.K.Pandey, Dharmendra Tripathi. Unsteady Peristaltic Transport of Maxwell Fluid Through a Finite Length Tube: Application to Oesophageal Swallowing[J]. Applied Mathematics and Mechanics, 2012, 33(1): 14-23. doi: 10.3879/j.issn.1000-0887.2012.01.002
Citation: S.K.Pandey, Dharmendra Tripathi. Unsteady Peristaltic Transport of Maxwell Fluid Through a Finite Length Tube: Application to Oesophageal Swallowing[J]. Applied Mathematics and Mechanics, 2012, 33(1): 14-23. doi: 10.3879/j.issn.1000-0887.2012.01.002

Maxwell流体在有限长管道中作不稳定的蠕动传输:食道吞咽进程分析

doi: 10.3879/j.issn.1000-0887.2012.01.002
详细信息
  • 中图分类号: O357.2

Unsteady Peristaltic Transport of Maxwell Fluid Through a Finite Length Tube: Application to Oesophageal Swallowing

  • 摘要: 解析地研究了有限长管道中Maxwell流体的不稳定蠕动传输.管壁受到不超过静止边界的收缩波作用.对无量纲形式的方程,应用长波长近似进行分析.导出了轴向速度和径向速度的表达式,评估了沿波长和管道长度方向的压力.讨论了回流现象,确定了回流极限区域.对食道中咀嚼食物(如面包、蛋白等)传输的数学公式给出了物理上的解释.可以看出,与Newton流体相比,Maxwell流体有利于在食道中的流动.与Takahashi等\的实验结果相符合.进一步揭示了松弛时间既不影响剪应力,也不影响回流极限.发现了压力的峰值,对整数值波列是相同的,而对非整数值波列是不同的.
  • [1] Hayat T, Ali N, Asghar S. Hall effects on peristaltic flow of a Maxwell fluid in porous medium[J]. Physics Letters A, 2007, 363(5/6): 397-403.
    [2] Tsiklauri D, Beresnev I. Non-Newtonian effects in the peristaltic flow of a Maxwell fluid[J]. Phys Rev E, 2001, 64(3): 036303-1-036303-5.
    [3] Tripathi D. Peristaltic transport of fractional Maxwell fluids in uniform tubes: application of an endoscope[J]. Computers and Mathematics With Applications, 2011, 62(3): 1116-1126.
    [4] Tripathi D. Peristaltic transport of a viscoelastic fluid in a channel[J]. Acta Astronautica, 2011, 68(7/8): 1379-1385.
    [5] Misra J C, Pandey S K. Peristaltic transport of physiological fluids[C]Biomathematics Modelling and Simulation. Singapore: World Scientific Publishing Co Pte Ltd, 2006.
    [6] Barnes H A, Hutton J F, Walters K. An Introduction to Rheology[M]. Amsterdam: Elsevier, 1989.
    [7] Li M, Brasseur J G. Nonsteady peristaltic transport in finite length tubes[J]. J Fluid Mech, 1993, 248: 129-151.
    [8] Misra J C, Pandey S K. A mathematical model for oesophageal swallowing of a food bolus[J]. Mathematical and Computer Modelling, 2001, 33(8/9): 997-1009.
    [9] Pandey S K, Tripathi D. Influence of magnetic field on the peristaltic flow of a viscous fluid through a finite-length cylindrical tube[J]. Applied Bionics and Biomechanics, 2010, 7(3): 169-176.
    [10] Pandey S K, Tripathi D. Unsteady model of transportation of Jeffrey fluid by peristalsis[J]. International Journal of Biomathematics, 2010, 3(4): 453-472.
    [11] Pandey S K, Tripathi D. Peristaltic transport of a casson fluid in a finite channel: application to flows of concentrated fluids in oesophagus[J]. International Journal of Biomathematics, 2010, 3(4): 473-491.
    [12] Pandey S K, Tripathi D. Effects of non-integral number of peristaltic waves transporting couple stress fluids in finite length channels[J]. Zeitschrift Fuer Naturforsch, 2011, 66a: 172-180.
    [13] Pandey S K, Tripathi D. Unsteady peristaltic flow of micro-polar fluid in a finite channel[J]. Zeitschrift Fuer Naturforsch, 2011, 66a: 181-192.
    [14] Tripathi D. A mathematical model for the movement of food bolus of varying viscosities through the oesophagus[J]. Acta Astronautica, 2011, 69(7/8): 429-439.
    [15] Pandey S K, Tripathi D. Peristaltic flow characteristics of Maxwell and magneto-hydrodynamic fluids in finite channels[J]. Journal of Biological Systems, 2010, 18(3): 621-647.
    [16] Pandey S K, Tripathi D. A mathematical model for swallowing of concentrated fluids in oesophagus[J]. Applied Bionics and Biomechanics, 2011, 8(3/4): 309-321, doi: 10.3233/ABB-2011-0044.
    [17] Pandey S K, Tripathi D. A mathematical model for peristaltic transport of micro-polar fluids[J]. Applied Bionics and Biomechanics, 2011, 8(3/4): 279-293, doi: 10.3233/ABB-2011-0003.
    [18] Tripathi D. A mathematical model for swallowing of food bolus through the oesophagus under the influence of heat transfer[J]. International Journal of Thermal Sciences, 2011, doi: 10.1016/j.ijthermalsci.2011.07.014.
    [19] Maxwell J C. On the dynamic theory of gases[J]. Phil Trans Soc, 1867, 157: 49.
    [20] Shapiro A H, Jaffrin M Y, Weinberg S L. Peristaltic pumping with long wavelengths at low Reynolds number[J]. J Fluid Mech, 1969, 37(4): 799-825.
    [21] Takahashi T, Ogoshi H, Miyamoto K, Yao M L. Visco-elastic properties of commercial plain yogurts and trial foods for swallowing disorders[J]. Rheology, 1999, 27: 169-172.
  • 加载中
计量
  • 文章访问数:  1372
  • HTML全文浏览量:  115
  • PDF下载量:  902
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-24
  • 修回日期:  2011-09-22
  • 刊出日期:  2012-01-15

目录

    /

    返回文章
    返回