留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

伴有磁场和纳米固体颗粒时的Jeffery-Hamel流动解析研究——Adomian分解法

M·塞克厚勒什勒米 D·D·甘集 H·R·阿秀讷加德 H·B·若克尼

M·塞克厚勒什勒米, D·D·甘集, H·R·阿秀讷加德, H·B·若克尼. 伴有磁场和纳米固体颗粒时的Jeffery-Hamel流动解析研究——Adomian分解法[J]. 应用数学和力学, 2012, 33(1): 24-34. doi: 10.3879/j.issn.1000-0887.2012.01.003
引用本文: M·塞克厚勒什勒米, D·D·甘集, H·R·阿秀讷加德, H·B·若克尼. 伴有磁场和纳米固体颗粒时的Jeffery-Hamel流动解析研究——Adomian分解法[J]. 应用数学和力学, 2012, 33(1): 24-34. doi: 10.3879/j.issn.1000-0887.2012.01.003
M.Sheikholeslami, D.D.Ganji, H.R.Ashorynejad, Houman B.Rokni. Analytical Investigation of Jeffery-Hamel Flow With High Magnetic Field and Nano Particle by Adomian Decomposition Method[J]. Applied Mathematics and Mechanics, 2012, 33(1): 24-34. doi: 10.3879/j.issn.1000-0887.2012.01.003
Citation: M.Sheikholeslami, D.D.Ganji, H.R.Ashorynejad, Houman B.Rokni. Analytical Investigation of Jeffery-Hamel Flow With High Magnetic Field and Nano Particle by Adomian Decomposition Method[J]. Applied Mathematics and Mechanics, 2012, 33(1): 24-34. doi: 10.3879/j.issn.1000-0887.2012.01.003

伴有磁场和纳米固体颗粒时的Jeffery-Hamel流动解析研究——Adomian分解法

doi: 10.3879/j.issn.1000-0887.2012.01.003
详细信息
  • 中图分类号: O361.3;O368

Analytical Investigation of Jeffery-Hamel Flow With High Magnetic Field and Nano Particle by Adomian Decomposition Method

  • 摘要: 用一种强有力的解析方法,称为Adomian分解法(ADM),来研究磁场和纳米颗粒对Jeffery-Hamel流动的影响.将该问题模型的控制方程,即将传统的流体力学Navier-Stokes方程和Maxwell电磁方程,简化为非线性的常微分方程.该方法得到的结果与Runge-Kutta方法得到的数值结果相一致,结果用表格列出.不同αHaRe数下的图形表明,本方法可以得到高精度的结果.首先对不同的Hartmann数和管壁倾角,研究喇叭形管道中的流场;最后在没有磁场作用时,研究纳米固体颗粒体积率的影响.
  • [1] Jeffery G B. The two-dimensional steady motion of a viscous fluid[J]. Phil Mag, 1915, 6: 455-465.
    [2] Hamel G. Spiralfrmige bewgeungen zher flüssigkeiten[J]. Jahresber Deutsch Math-Verein, 1916, 25: 34-60.
    [3] Bansal L. Magnetofluiddynamics of Viscous Fluids[M]. Jaipur, India: Jaipur Publishing House. OCLC 70267818, 1994.
    [4] Cha J E, Ahn Y C, Moo-Hwan Kim. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes[J]. Flow Measurement and Instrumentation, 2002,12(5/6): 329-339.
    [5] Tendler M. Confinement and related transport in extrap geometry[J]. Nuclear Instruments and Methods in Physics Research, 1983, 207(1/2): 233-240.
    [6] Makinde O D, Motsa S S. Hydromagnetic stability of plane Poiseuille flow using Chebyshev spectral collocation method[J]. J Ins Math Comput Sci, 2001, 12(2): 175-183.
    [7] Makinde O D. Magneto-hydrodynamic stability of plane—Poiseuille flow using multi-deck asymptotic technique[J]. Math Comput Modelling, 2003, 37(3/4): 251-259.
    [8] Anwari M, Harada N, Takahashi S. Performance of a magnetohydrodynamic accelerator using air-plasma as working gas[J]. Energy Conversion Management, 2005, 4: 2605-2613.
    [9] Homsy A, Koster S, Eijkel J C T, van der Berg A, Lucklum F, Verpoorte E, de Rooij N F. A high current density DC magnetohydrodynamic (MHD) micropump[J]. Lab Chip, 2005, 5(4): 466-471.
    [10] Kaka S. Pramuanjaroenkij A. Review of convective heat transfer enhancement with nanofluids[J]. Int J Heat Mass Transf, 2009, 52(13/14): 3187-3196.
    [11] Aminossadati S M, Ghasemi B. Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure[J]. European J Mech B/Fluids, 2009, 28(5): 630-640.
    [12] Yacob N, Ishak A, Nazar R, Pop I. Falkner-Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid[J]. International Communications in Heat and Mass Transfer, 2011, 38(2): 149-153.
    [13] Adomian G. A review of the decomposition method in applied mathematics[J]. Journal of Mathematical Analysis and Applications, 1988, 135(2): 501-544.
    [14] Ghosh S, Roy A, Roy D. An adaptation of adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators[J]. Comput Meth Appl Mech Engrg, 2007, 196(4/6): 1133-1153.
    [15] Jafari H, Daftardar-Gejji V. Revised Adomian decomposition method for solving a system of nonlinear equations[J]. Appl Math Comput, 2006, 175(1): 1-7.
    [16] Allan F M, Syam M I. On the analytic solutions of the nonhomogeneous Blasius problem[J]. J Comput Appl Math[J]. 2005, 182(2): 362-371.
    [17] Hashim I. Adomian decomposition method for solving BVPs for fourth-order integro-differential equations[J]. J Comput Appl Math, 2006, 193(2): 658-664.
    [18] Hashim I. Comments on a new algorithm for solving classical Blasius equation[J]. J Com Appl Math, 2005, 182: 362-371.
    [19] Kechil S A, Hashim I. Non-perturbative solution of free-convective boundary-layer equation by Adomian decomposition method[J]. Phys Lett A, 2007, 363(1/2): 110-114.
    [20] Arslanturk C. A decomposition method for fins efficiency of convective straight fins with temperature-dependent thermal conductivity[J]. Int Commun Heat Mass Transfer, 2005, 32(6): 831-841.
    [21] Pamuk S. Solution of the porous media equation by Adomian’s decomposition method[J]. Phys Lett A, 2005, 344(2/4): 184-188.
    [22] Daftardar-Gejji V, Jafari H. An iterative method for solving nonlinear functional equations[J]. J Math Anal Appl, 2006, 316(2): 753-763.
    [23] Lesnic D. Decomposition methods for non-linear non-characteristic Cauchy heat problems[J]. Commun Nonlinear Sci Numer Simulat, 2005, 10(6): 581-596.
    [24] LUO Xing-guo. A two-step adomian decomposition method[J]. Appl Math Comput, 2005, 170(1): 570-583.
    [25] ZHANG Xin-hua. A modification of the Adomian decomposition method for a class of nonlinear singular boundary value problems[J]. J Comput Appl Math, 2005, 180(2): 377-389.
    [26] Kaya D, Yokus A. A comparison of partial solutions in the decomposition method for linear and nonlinear partial differential equations[J]. Math Comput Simul, 2002, 60(6): 507-512.
    [27] Ganji Z Z, Ganji D D, Rostamiyan Y. Solitary wave solutions for a time-fraction generalized Hirota-Satsuma coupled KdV equation by an analytical technique[J]. Applied Mathematical Modelling, 2009, 33(7): 3107-3113.
    [28] Esmaeilpour M, Ganji D D. Solution of the Jeffery-Hamel flow problem by optimal homotopy asymptotic method[J]. Computers and Mathematics With Applications, 2010, 59(11): 3405-3411.
    [29] Moghimi S M, Ganji D D, Bararnia H, Hosseini M, Jalaal M. Homotopy perturbation method for nonlinear MHD Jeffery-Hamel problem [J]. Computers & Mathematics With Applications, 2011, 61(8): 2213-2216.
    [30] Babazadeh H, Ganji D D, Akbarzade M. He’s energy balance method to evaluate the effect of amplitude on the natural frequency in nonlinear vibration systems[J]. Journal of Electromagnetic Waves and Applications (JEMWA) Progress in Electromagnetic Research, 2008, 4: 143-154.
    [31] Ganji D D, Babazadeh H, Jalaei M H, Tashakkorian H. Application of he’s variational iteration methods for solving nonlinear BBMB equations and free vibrations of systems[J]. Acta Appl Math, 2009, 106(3): 359-367.
    [32] 司新辉, 郑连存, 张欣欣, 晁莹. 磁场力作用下胀缩可渗透壁面管道非稳态流动摄动解[J]. 应用数学和力学, 2010, 31(2): 143-149.(SI Xin-hui, ZHENG Lian-cun, ZHANG Xin-xin, CHAO Ying. Perturbation solution to unsteady flow in a porous channel with expanding or contracting walls in the presence of a transverse magnetic field[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(2): 151-158.)
    [33] Ganji D D, Rokni Houman B, Sfahani M G, Ganji S S. Approximate traveling wave solutions for coupled shallow water[J]. Advances in Engineering Software, 2010, 41: 956-961.
    [34] Tari Hafez, Ganji D D, Babazadeh H. The application of he’s variational iteration method to nonlinear equations arising in heat transfer[J]. Physics Letters A, 2007, 363(3): 213 -217.
    [35] Ganji S S, Ganji D D, Babazadeh H, Sadoughi N. Application of amplitude-frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back[J]. Mathematical Methods in the Applied Sciences, 2009, 33(2): 157-166.
    [36] 原培新, 李永强. 强非线性多自由度动力系统主共振同伦分析法研究[J]. 应用数学和力学, 2010, 31(10): 1229-1248.(YUAN Pei-xin, LI Yong-qiang. Primary resonance of multiple degree-of-freedom dynamic systems with strong non-linearity using the homotopy analysis method[J]. Applied Mathematics and Mechanics(English Edition), 2010, 31(10): 1293-1304.)
    [37] Ganji S S, Ganji D D, Karimpour S, Babazadeh H. Applications of he’s homotopy perturbation method to obtain second-order approximations of coupled two-degree-of-freedom system[J]. International Journal of Nonlinear Science and Numerical Simulation, 2009,10(3): 303-312.
    [38] Ganji D D, Rokni Houman B, Rafiee M Hadi, Imani A A, Esfandyaripour M, Sheikholeslami M. Reconstruction of variational iteration method for boundary value problems in structural engineering and fluid mechanics[J]. International Journal of Nonlinear Dynamics in Engineering and Sciences, 2011, 3: 1-10.
    [39] 冯少东, 陈立群. Duffing简谐振子同伦分析法求解[J]. 应用数学和力学, 2009, 30(9): 1015-1020.( FENG Shao-dong, CHEN Li-qun. Homotopy analysis approach to the Duffing harmonic oscillator[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(9): 1083-1089.)
    [40] Ganji D D, Nezhad H R Ashory, Hasanpour A. Effect of variable viscosity and viscous dissipation on the Hagen-Poiseuille flow and entrop
  • 加载中
计量
  • 文章访问数:  1808
  • HTML全文浏览量:  133
  • PDF下载量:  921
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-20
  • 修回日期:  2011-09-15
  • 刊出日期:  2012-01-15

目录

    /

    返回文章
    返回