留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微极液体在两个多孔圆盘间的MHD流动及其热传导

M·阿斯拉夫 A·R·威格尔

M·阿斯拉夫, A·R·威格尔. 微极液体在两个多孔圆盘间的MHD流动及其热传导[J]. 应用数学和力学, 2012, 33(1): 48-60. doi: 10.3879/j.issn.1000-0887.2012.01.005
引用本文: M·阿斯拉夫, A·R·威格尔. 微极液体在两个多孔圆盘间的MHD流动及其热传导[J]. 应用数学和力学, 2012, 33(1): 48-60. doi: 10.3879/j.issn.1000-0887.2012.01.005
Muhammad Ashraf, A.R.Wehgal. MHD Flow and Heat Transfer of a Micropolar Fluid Between Two Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(1): 48-60. doi: 10.3879/j.issn.1000-0887.2012.01.005
Citation: Muhammad Ashraf, A.R.Wehgal. MHD Flow and Heat Transfer of a Micropolar Fluid Between Two Porous Disks[J]. Applied Mathematics and Mechanics, 2012, 33(1): 48-60. doi: 10.3879/j.issn.1000-0887.2012.01.005

微极液体在两个多孔圆盘间的MHD流动及其热传导

doi: 10.3879/j.issn.1000-0887.2012.01.005
详细信息
  • 中图分类号: O361.3; O368

MHD Flow and Heat Transfer of a Micropolar Fluid Between Two Porous Disks

  • 摘要: 两个平行的无限大多孔圆盘,圆盘表面有均匀注入时,数值地研究圆盘间不可压缩导电微极流体,在横向外加磁场作用下的轴对称稳定层流.运用von Krmn的相似变换,将非线性运动的控制方程转化为无量纲形式.使用基于有限差分格式的算法,在相应的边界条件下,求解简化后耦合的常微分方程组.讨论Reynolds数、磁场参数、微极参数和Prandtl数,对流动速度和温度分布的影响.在特殊情况下,所得结果与已有文献的工作有着很好的一致性.研究表明,圆盘表面的传热率随着Rynolds数、磁场参数和Prandtl数的增加而增加;剪切应力随着注入的增加而减少,但它随着外部磁场的加强而增加.和Newton流体相比较,微极流体的剪切应力因素较弱,有利于聚合体加工过程中流动和温度的控制.
  • [1] Elcrat A R.On the radial flow of a viscous fluid between porous disks[J]. Arch Rat Mech Anal, 1976, 61(1): 91-96.
    [2] Rasmussen H. Steady viscous flow between two porous disks[J]. Z Angew Math Phys, 1970, 21(2): 187-195.
    [3] Guar Y N, Chaudhary R C. Heat transfer for laminar flow through parallel porous disks of different permeability[J]. Indian Academy of Sciences, Section A, 1978, 87(9): 209-217.
    [4] Rudraiah N, Chandrasekhara B C. Flow of a conducting fluid between porous disks for suction Reynolds number[J]. J Phys Society Japan, 1969, 27(4): 1041-1045.
    [5] Phan Thien N, Bush M B. On the steady flow of a Newtonian fluid between two parallel disks[J]. ZAMP, 1984, 35(6): 912-919.
    [6] Attia H A. On the effectiveness of the ion slip on the steady flow of a conducting fluid due to a porous rotating disk with heat transfer[J]. Tamkang J Sci Eng, 2006, 9(11): 185-193.
    [7] Fang T. Flow over a stretchable disk[J]. Phys Fluids, 2007, 19(12): 128101-128105.
    [8] Ibrahim F N. Unsteady flow between two rotating disks with heat transfer[J]. J Phys D: Appl Phys, 1991, 24(8): 1293-1299.
    [9] Frusteri F, Osalusi E.On MHD and slip flow over a rotating porous disk with variable properties[J]. Int Communications in Heat and Mass Transfer, 2007, 34(4): 492-501.
    [10] Ersoy H V. An approximate solution for flow between two disks rotating about distinct axes at different speeds[J]. Math Problems in Eng, 2007, 2007: 1-16.
    [11] Eringen A C. Simple microfluids[J]. Int J Eng Sci, 1964, 2(2): 205-217.
    [12] Eringen A C. Theory of micropolar fluids[J]. J Math Mech, 1966, 16(1): 1-18.
    [13] Ariman T, Turk M A, Sylvester N D. Microrotation fluid Mechanics—a review[J]. Int J Eng Sci, 1973,11(8): 905-930.
    [14] Guram G S, Anwar M. Steady flow of a micropolar fluid due to a rotating disk[J]. J Eng Math, 1979, 13(3):223-234.
    [15] Guram G S, Anwar M. Micropolar flow due to a rotating disk with suction and injection[J]. ZAMM, 1981, 61(11):589-605.
    [16] Takhar H S, Bhargava R, Agrawal R S, Balaji A V S. Finite element solution of micropolar fluid flow and heat transfer between two porous disks[J].Int J Eng Sci, 2000, 38(17): 1907-1922.
    [17] WANG Xiao-li, ZHU Ke-qin. Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects[J]. Tribology Int, 2006, 39(3): 227-237.
    [18] Sacheti N C, Bhatt B S. Steady laminar flow of a non-Newtonian fluid with suction or injection and heat transfer through porous parallel disks[J]. ZAMM, 2006, 56(1): 43-50.
    [19] Anwar Kamal M, Ashraf M, Syed K S. Numerical solution of steady viscous flow of a micropolar fluid driven by injection between two porous disks[J]. Appl Math Comput, 2006, 179(1):1-10.
    [20] Ashraf M, Anwar Kamal M, Syed K S. Numerical simulation of a micropolar fluid between a porous disk and a non-porous disk[J]. Appl Math Model, 2009, 33(4): 1933-1943.
    [21] Ashraf M, Anwar Kamal M, Syed K S. Numerical study of asymmetric laminar flow of micropolar fluids in a porous channel[J]. Computers and Fluids, 2009, 38(10): 1895-1902.
    [22] Shercliff J A. A Text Book of Magnetohydrodynamics[M]. Oxford :Pergamon Press, 1965.
    [23] Rossow V J. On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field
    [24] [R]. NASA: Tech Report 1358, 1958.
    [25] von Krmn M. Under laminare and turbulente[J]. Reibung Z Zngew Math Mech, 1921, 1: 233-235.
    [26] Elkouh A F. Laminar flow between porous disks[J]. J Eng Mech Div ASCE, 1967, 93: 5375-5377.
    [27] Gerald C F. Applied Numerical Analysis[M]. Massachusetts:Addison-Wesley Publishing Company, 1974.
    [28] Milne W E. Numerical Solutions of Differential Equations[M]. New York: John Willey and Sons Inc,1953.
    [29] Syed K S, Tupholme G E, Wood A S. Iterative solution of fluid flow in finned tubes[C]Taylor C, Cross J T.Proceedings of the 10th International Conference on Numerical Methods in Laminar and Turbulent Flow.UK: Pineridge Press, 1997, 429-440.
    [30] Deuflhard P. Order and step size control in extrapolation methods[J]. Numer Math, 1983, 41(3): 399-422.
    [31] Chang L C. Numerical simulation of micropolar fluid flow along a flat plate with wall conduction and buoyancy effects[J]. J Phys D: Appl Phys, 2006, 39(6): 1132-1140.
    [32] Lok Y Y, Pop I, Chamkha Ali.Nonorthogonal stagnation point flow of a micropolar fluid[J]. Int J Eng Sci, 2007, 45(1): 173-184.
    [33] M.阿斯拉夫, M.M.阿斯拉夫. 微极流体向受热面的MHD驻点流动[J]. 应用数学和力学, 2011, 32(1): 44-52.(Ashraf M, Ashraf M M.MHD stagnation point flow of a micropolar fluid towards a heated surface[J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(1): 45-54.)
  • 加载中
计量
  • 文章访问数:  1419
  • HTML全文浏览量:  80
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-16
  • 修回日期:  2011-09-20
  • 刊出日期:  2012-01-15

目录

    /

    返回文章
    返回