留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加热下分数阶广义二阶流体的Stokes第一问题的高阶数值方法

叶超 骆先南 文立平

叶超, 骆先南, 文立平. 加热下分数阶广义二阶流体的Stokes第一问题的高阶数值方法[J]. 应用数学和力学, 2012, 33(1): 61-75. doi: 10.3879/j.issn.1000-0887.2012.01.006
引用本文: 叶超, 骆先南, 文立平. 加热下分数阶广义二阶流体的Stokes第一问题的高阶数值方法[J]. 应用数学和力学, 2012, 33(1): 61-75. doi: 10.3879/j.issn.1000-0887.2012.01.006
YE Chao, LUO Xian-nan, WEN Li-ping. High-Order Numerical Methods of the Fractional Order Stokes’ First Problem for a Heated Generalized Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(1): 61-75. doi: 10.3879/j.issn.1000-0887.2012.01.006
Citation: YE Chao, LUO Xian-nan, WEN Li-ping. High-Order Numerical Methods of the Fractional Order Stokes’ First Problem for a Heated Generalized Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(1): 61-75. doi: 10.3879/j.issn.1000-0887.2012.01.006

加热下分数阶广义二阶流体的Stokes第一问题的高阶数值方法

doi: 10.3879/j.issn.1000-0887.2012.01.006
基金项目: 国家自然科学基金资助项目(10971175);湖南省教育厅重点科研资助项目(09A093)
详细信息
    通讯作者:

    叶超(1985—),男,湖北人,硕士(联系人.E-mail:yechaofan@gmail.com).

  • 中图分类号: O241.82

High-Order Numerical Methods of the Fractional Order Stokes’ First Problem for a Heated Generalized Second Grade Fluid

  • 摘要: 针对一类带Dirichlet边值条件和初值条件的加热下分数阶广义二阶流体的Stokes第一问题,提出了一种新的高阶隐式数值格式.应用Fourier分析方法和矩阵方法研究了该格式的稳定性、可解性及收敛性.也进一步给出一个时间误差阶更高的改进的隐式格式.最后通过两个数值算例验证了格式的理论分析是有效可靠的.
  • [1] Podlubny I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
    [2] Shriram Srinivasana, Rajagopal K R. Study of a variant of Stokes’first and second problems for fluids with pressure dependent viscosities[J]. International Journal of Engineering Science, 2009, 47(11/12): 1357-1366.
    [3] Beiro da Veigaa L, Gyrya V, Lipnikov K, Manzini G. Mimetic finite difference method for the Stokes problem on polygonal meshes[J]. Journal of Computational Physics, 2009, 228(19): 7215-7232.
    [4] Ivan C Christov. Stokes’first problem for some non-Newtonian fluids: Results and mistakes[J]. Mechanics Research Communications, 2010, 37(8): 717-723.
    [5] 庄平辉, 刘青霞. 加热下分数阶广义二阶流体的Rayleigh-Stokes问题的一种有效数值方法[J]. 应用数学和力学, 2009, 30(12): 1440-1452.(ZHUANG Ping-hui, LIU Qing-xia. Numerical method of Rayleigh-Stokes problem for heated generalizedsecond grade fluid with fractional derivative[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(12): 1533-1546.
    [6] TAN Wen-chang, Masuoka Takashi. Stokes’first problem for a second grade fluid in a porous half-space with heated boundary[J]. International Journal of Non-Linear Mechanics, 2005, 40(4): 515-522.
    [7] Hayat T, Shahazad F, Ayub M. Stokes’first problem for the fourth order fluid in a porous half space[J]. Acta Mechanica Sinica, 2007, 23(1): 17-21.
    [8] Devakara M, Iyengar T K V. Stokes’ first problem for a micropolar fluid through state-space approach[J]. Applied Mathematical Modelling, 2009, 33(2): 924-936.
    [9] Salah Faisal, Zainal Abdul Aziz, Dennis Ling Chuan Ching. New exact solution for Rayleigh-Stokes problem of Maxwell fluid in a porous medium and rotating frame[J]. Results in Physics, 2011, 1(1): 9-12.
    [10] Magdy A. Ezzat, Hamdy M. Youssef. Stokes’first problem for an electro-conducting micropolar fluid with thermoelectric properties[J]. Canadian Journal of Physics, 2010, 88(1): 35-48.
    [11] SHEN Fang, TAN Wen-chang, ZHAO Yao-hua, Takashi Masuoka. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model[J]. Nonlinear Analysis: Real World Applications, 2006, 7(5): 1072-1080.
    [12] CHEN Chang-ming, LIU F, Anh V. A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative[J]. J Comput Appl Math, 2009, 223(2): 777-789.
    [13] Liu F, Yang Q, Turner I. Stability and convergence of two new implicit numerical methods for the fractional cable equation[C]Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, California, 2009.
    [14] Liu F, Yang Q, Turner I. Two new implicit numerical methods for the fractional cable equation[J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(1): 011009.
    [15] Chen C, Liu F, Turner I, Anh V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid[J]. Computer & Mathematics With Application, 2011, 62(3): 971-986.
    [16] WU Chun-hong. Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative[J]. Appl Numer Math, 2009, 59(10): 2571-2583.
    [17] CUI Ming-rong. Compact finite difference method for the fractional diffusion equation[J]. J Comput Phys, 2009, 228(20): 7792-7804.
    [18] Zhuang P, Liu F, Anh V, Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation[J]. Siam J Numer Anal, 2008, 46(2): 1079-1095.
    [19] Thomas J W. Numerical Partial Differential Equations: Finite Difference Methods[M]. New York: Springer-Verlag, 1995.
    [20] Quarteroni A, Valli A. Numerical Approximation of Partial Differential Equations, Springer Series in Compututational Mathematics 23[M]. Berlin: Springer-Verlag, 1994.
    [21] Roger A Horn, Charles R Johnson. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985.
    [22] 叶超, 骆先南, 文立平. 分数阶扩散方程的一种新的高阶数值方法[J]. 湘潭大学自然科学学报, 2011, 33(4): 19-23.(YE Chao, LUO Xian-nan, WEN Li-ping. A new high order numerical method for the fractional diffusion equation[J]. Natural Science Journal of Xiangtan University, 2011, 33(4): 19-23.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1841
  • HTML全文浏览量:  175
  • PDF下载量:  851
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-03
  • 修回日期:  2011-11-07
  • 刊出日期:  2012-01-15

目录

    /

    返回文章
    返回