## 留言板

 引用本文: 叶超, 骆先南, 文立平. 加热下分数阶广义二阶流体的Stokes第一问题的高阶数值方法[J]. 应用数学和力学, 2012, 33(1): 61-75.
YE Chao, LUO Xian-nan, WEN Li-ping. High-Order Numerical Methods of the Fractional Order Stokes’ First Problem for a Heated Generalized Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(1): 61-75. doi: 10.3879/j.issn.1000-0887.2012.01.006
 Citation: YE Chao, LUO Xian-nan, WEN Li-ping. High-Order Numerical Methods of the Fractional Order Stokes’ First Problem for a Heated Generalized Second Grade Fluid[J]. Applied Mathematics and Mechanics, 2012, 33(1): 61-75.

## 加热下分数阶广义二阶流体的Stokes第一问题的高阶数值方法

##### doi: 10.3879/j.issn.1000-0887.2012.01.006

###### 通讯作者: 叶超(1985—),男,湖北人,硕士(联系人.E-mail:yechaofan@gmail.com).
• 中图分类号: O241.82

## High-Order Numerical Methods of the Fractional Order Stokes’ First Problem for a Heated Generalized Second Grade Fluid

• 摘要: 针对一类带Dirichlet边值条件和初值条件的加热下分数阶广义二阶流体的Stokes第一问题，提出了一种新的高阶隐式数值格式．应用Fourier分析方法和矩阵方法研究了该格式的稳定性、可解性及收敛性．也进一步给出一个时间误差阶更高的改进的隐式格式．最后通过两个数值算例验证了格式的理论分析是有效可靠的．
•  [1] Podlubny I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999. [2] Shriram Srinivasana, Rajagopal K R. Study of a variant of Stokes’first and second problems for fluids with pressure dependent viscosities[J]. International Journal of Engineering Science, 2009, 47(11/12): 1357-1366. [3] Beiro da Veigaa L, Gyrya V, Lipnikov K, Manzini G. Mimetic finite difference method for the Stokes problem on polygonal meshes[J]. Journal of Computational Physics, 2009, 228(19): 7215-7232. [4] Ivan C Christov. Stokes’first problem for some non-Newtonian fluids: Results and mistakes[J]. Mechanics Research Communications, 2010, 37(8): 717-723. [5] 庄平辉， 刘青霞. 加热下分数阶广义二阶流体的Rayleigh-Stokes问题的一种有效数值方法[J]. 应用数学和力学， 2009, 30(12): 1440-1452.（ZHUANG Ping-hui, LIU Qing-xia. Numerical method of Rayleigh-Stokes problem for heated generalizedsecond grade fluid with fractional derivative[J]. Applied Mathematics and Mechanics(English Edition), 2009, 30(12): 1533-1546. [6] TAN Wen-chang, Masuoka Takashi. Stokes’first problem for a second grade fluid in a porous half-space with heated boundary[J]. International Journal of Non-Linear Mechanics, 2005, 40(4): 515-522. [7] Hayat T, Shahazad F, Ayub M. Stokes’first problem for the fourth order fluid in a porous half space[J]. Acta Mechanica Sinica, 2007, 23(1): 17-21. [8] Devakara M, Iyengar T K V. Stokes’ first problem for a micropolar fluid through state-space approach[J]. Applied Mathematical Modelling, 2009, 33(2): 924-936. [9] Salah Faisal, Zainal Abdul Aziz, Dennis Ling Chuan Ching. New exact solution for Rayleigh-Stokes problem of Maxwell fluid in a porous medium and rotating frame[J]. Results in Physics, 2011, 1(1): 9-12. [10] Magdy A. Ezzat, Hamdy M. Youssef. Stokes’first problem for an electro-conducting micropolar fluid with thermoelectric properties[J]. Canadian Journal of Physics, 2010, 88(1): 35-48. [11] SHEN Fang, TAN Wen-chang, ZHAO Yao-hua, Takashi Masuoka. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model[J]. Nonlinear Analysis: Real World Applications, 2006, 7(5): 1072-1080. [12] CHEN Chang-ming, LIU F, Anh V. A Fourier method and an extrapolation technique for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative[J]. J Comput Appl Math, 2009, 223(2): 777-789. [13] Liu F, Yang Q, Turner I. Stability and convergence of two new implicit numerical methods for the fractional cable equation[C]Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, San Diego, California, 2009. [14] Liu F, Yang Q, Turner I. Two new implicit numerical methods for the fractional cable equation[J]. Journal of Computational and Nonlinear Dynamics, 2011, 6(1): 011009. [15] Chen C, Liu F, Turner I, Anh V. Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokes’ first problem for a heated generalized second grade fluid[J]. Computer & Mathematics With Application, 2011, 62(3): 971-986. [16] WU Chun-hong. Numerical solution for Stokes’ first problem for a heated generalized second grade fluid with fractional derivative[J]. Appl Numer Math, 2009, 59(10): 2571-2583. [17] CUI Ming-rong. Compact finite difference method for the fractional diffusion equation[J]. J Comput Phys, 2009, 228(20): 7792-7804. [18] Zhuang P, Liu F, Anh V, Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation[J]. Siam J Numer Anal, 2008, 46(2): 1079-1095. [19] Thomas J W. Numerical Partial Differential Equations: Finite Difference Methods[M]. New York: Springer-Verlag, 1995. [20] Quarteroni A, Valli A. Numerical Approximation of Partial Differential Equations, Springer Series in Compututational Mathematics 23[M]. Berlin: Springer-Verlag, 1994. [21] Roger A Horn, Charles R Johnson. Matrix Analysis[M]. Cambridge: Cambridge University Press, 1985. [22] 叶超, 骆先南, 文立平. 分数阶扩散方程的一种新的高阶数值方法[J]. 湘潭大学自然科学学报, 2011, 33(4): 19-23.(YE Chao, LUO Xian-nan, WEN Li-ping. A new high order numerical method for the fractional diffusion equation[J]. Natural Science Journal of Xiangtan University, 2011, 33(4): 19-23.(in Chinese))

##### 计量
• 文章访问数:  1841
• HTML全文浏览量:  175
• PDF下载量:  851
• 被引次数: 0
##### 出版历程
• 收稿日期:  2011-08-03
• 修回日期:  2011-11-07
• 刊出日期:  2012-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈