1980, 1(3): 363-390.
摘要:
本文利用变分原理建立了具有弹性边拱及拉杆支承的双曲扁壳的平衡方程式及相应的边界条件和角点条件,这里假定边拱只在其本身平面内有刚度,边拱的扭转刚度和垂直于其平面的弯曲刚度都略去不计,本文研究了不许自由外伸的角点铰支条件,以及能够自由外伸的角点简支条件,前者相当于周边有拉杆限制角点外伸位移的情况,后者相当于周边无拉杆的情况.对于前者而言,本文近似地假定边拱沿弧方向的抗拉伸刚度为无穷大,亦即假定扁壳的边界切向位移为零,边拱只通过其垂直于扁壳平面的弯曲来产生弹性支承的作用.这些支承条件是近似地符合当前双曲扁壳屋盖的设计条件的.本文利用双三角级数解法求得具有弹性边拱及拉杆支承的方形底球面扁壳在自重载荷下的正确解.其特点在于先将边界条件积分处理使先满足角点条件,然后求解平面应力微分方程使满足积分后的边界条件.本文的结果直接给出拉杆中的拉力,对于具体设计问题是有用的.本文提出的积分形式的边界条件方法,对于弹性支承的边界问题在板壳方面的应用中是有它的普遍实用意义的.本文还给出了具有弹性边拱支承的方形底扁球壳的数值结果,角点为铰支或简支的,选取的参数值为λ=11.5936.计算结果表明级数收敛很快,并得出了边拱的弹性变形对壳体内力、内力矩及挠度分布规律的影响.