1993, 14(12): 1093-1104.
摘要:
本文将无限大激波阵面的激波不稳定性理论[1]推广到矩形截面管道内的激波不稳定性问题.首先,给出这个问题的数学提法,包括扰动方程与三类边界条件.其次,给出扰动方程的普遍解.上游和下游的普遍解分别含有5个待定常数.再次,在一类边界条件和一个假定下,证明了激波前扰动为0,激波后两个声扰动之一为0.边界条件是,X→±∞处扰动物理量为0.假定只讨论激波不稳定性问题,从而可先设ω=iγ,γ是不稳定性增长率,为正实数.另一类边界条件是管壁上法向速度扰动为0,它使波数只能取一组离散值.最后,用扰动激波上的5个守恒方程这一边界条件来决定激波后4个待定常数和扰动激波振幅这个未知量时,导出了色散关系.结果表明,正实...