1982, 3(5): 621-627.
摘要:
在讨论耦合热弹性问题的变分原理的一些著作中,以弹性应变eij和温度变化值θ为状态参数的自由能φ(eij,θ)为自由能的这一表达式只适用于|θ|<0(绝对参考温度)的情况.在热冲击弹性问题中,温度变化值θ很大,甚至可以大过T0同时,材料常数(λ,μ,γ,c等)随θ而发生变化,不再保持为常数.就这种情况,本文导出自由能的表达式.(0.1)式则为其特殊情况.将自由能的这一表达式引入变分原理,其欧拉方程将成为非线性.为了线性化,将热冲击作用的时间过程划分为若干足够小的时间元△tk(△tk=tk-tk-1,k=1,2,…,n).在△tk中,温度变化θk很小,材料常数由tk-1瞬时的温度场Tk-1=Tx1,x2,x3,tk-1确定,自由能φk可近似地采用(0.1)式的形式,从而得到变分原理的分段近似表达.